Loading…
Demonstration of superconducting micromachined cavities
Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfa...
Saved in:
Published in: | Applied physics letters 2015-11, Vol.107 (19) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73 |
container_end_page | |
container_issue | 19 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 107 |
creator | Brecht, T. Reagor, M. Chu, Y. Pfaff, W. Wang, C. Frunzio, L. Devoret, M. H. Schoelkopf, R. J. |
description | Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing. |
doi_str_mv | 10.1063/1.4935541 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22486055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123847903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhIMoWKsH_8GCJw9b8-Z7j1I_oeBFzyEmWZviJmuSFfz3rrTgaRh4GGYGoUvAK8CC3sCKdZRzBkdoAVjKlgKoY7TAGNNWdBxO0Vkpu9lyQukCyTs_pFhqNjWk2KS-KdPos03RTbaG-NEMweY0GLsN0bvGmu9Qgy_n6KQ3n8VfHHSJ3h7uX9dP7ebl8Xl9u2ktVaK23irG34FiopiR3IPtVUdcZ70T3IHiTmHhoLeKg5HSWcIEIb1yhngmnaRLdLXPTaUGXWyo3m7ndtHbqglhSmDO_6kxp6_Jl6p3acpxLqYJEKqY7DCdqes9NQ8qJftejzkMJv9owPrvPQ368B79Be4rYDY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123847903</pqid></control><display><type>article</type><title>Demonstration of superconducting micromachined cavities</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Brecht, T. ; Reagor, M. ; Chu, Y. ; Pfaff, W. ; Wang, C. ; Frunzio, L. ; Devoret, M. H. ; Schoelkopf, R. J.</creator><creatorcontrib>Brecht, T. ; Reagor, M. ; Chu, Y. ; Pfaff, W. ; Wang, C. ; Frunzio, L. ; Devoret, M. H. ; Schoelkopf, R. J.</creatorcontrib><description>Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4935541</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>APERTURES ; Applied physics ; Cavity resonators ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computation ; Conductors ; Enclosures ; INDIUM ; Machining ; Micromachining ; MICROWAVE RADIATION ; Multilayers ; Q factors ; QUALITY FACTOR ; QUANTUM COMPUTERS ; Quantum computing ; QUANTUM ELECTRODYNAMICS ; Quantum phenomena ; Quantum theory ; QUBITS ; Qubits (quantum computing) ; Seams ; SUPERCONDUCTING CAVITY RESONATORS ; Superconductivity ; Transmission lines</subject><ispartof>Applied physics letters, 2015-11, Vol.107 (19)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73</citedby><cites>FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73</cites><orcidid>0000-0002-4408-2349 ; 0000-0003-4303-0819 ; 0000-0003-4488-7056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22486055$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brecht, T.</creatorcontrib><creatorcontrib>Reagor, M.</creatorcontrib><creatorcontrib>Chu, Y.</creatorcontrib><creatorcontrib>Pfaff, W.</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Frunzio, L.</creatorcontrib><creatorcontrib>Devoret, M. H.</creatorcontrib><creatorcontrib>Schoelkopf, R. J.</creatorcontrib><title>Demonstration of superconducting micromachined cavities</title><title>Applied physics letters</title><description>Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.</description><subject>APERTURES</subject><subject>Applied physics</subject><subject>Cavity resonators</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computation</subject><subject>Conductors</subject><subject>Enclosures</subject><subject>INDIUM</subject><subject>Machining</subject><subject>Micromachining</subject><subject>MICROWAVE RADIATION</subject><subject>Multilayers</subject><subject>Q factors</subject><subject>QUALITY FACTOR</subject><subject>QUANTUM COMPUTERS</subject><subject>Quantum computing</subject><subject>QUANTUM ELECTRODYNAMICS</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>QUBITS</subject><subject>Qubits (quantum computing)</subject><subject>Seams</subject><subject>SUPERCONDUCTING CAVITY RESONATORS</subject><subject>Superconductivity</subject><subject>Transmission lines</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEYhIMoWKsH_8GCJw9b8-Z7j1I_oeBFzyEmWZviJmuSFfz3rrTgaRh4GGYGoUvAK8CC3sCKdZRzBkdoAVjKlgKoY7TAGNNWdBxO0Vkpu9lyQukCyTs_pFhqNjWk2KS-KdPos03RTbaG-NEMweY0GLsN0bvGmu9Qgy_n6KQ3n8VfHHSJ3h7uX9dP7ebl8Xl9u2ktVaK23irG34FiopiR3IPtVUdcZ70T3IHiTmHhoLeKg5HSWcIEIb1yhngmnaRLdLXPTaUGXWyo3m7ndtHbqglhSmDO_6kxp6_Jl6p3acpxLqYJEKqY7DCdqes9NQ8qJftejzkMJv9owPrvPQ368B79Be4rYDY</recordid><startdate>20151109</startdate><enddate>20151109</enddate><creator>Brecht, T.</creator><creator>Reagor, M.</creator><creator>Chu, Y.</creator><creator>Pfaff, W.</creator><creator>Wang, C.</creator><creator>Frunzio, L.</creator><creator>Devoret, M. H.</creator><creator>Schoelkopf, R. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4408-2349</orcidid><orcidid>https://orcid.org/0000-0003-4303-0819</orcidid><orcidid>https://orcid.org/0000-0003-4488-7056</orcidid></search><sort><creationdate>20151109</creationdate><title>Demonstration of superconducting micromachined cavities</title><author>Brecht, T. ; Reagor, M. ; Chu, Y. ; Pfaff, W. ; Wang, C. ; Frunzio, L. ; Devoret, M. H. ; Schoelkopf, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>APERTURES</topic><topic>Applied physics</topic><topic>Cavity resonators</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computation</topic><topic>Conductors</topic><topic>Enclosures</topic><topic>INDIUM</topic><topic>Machining</topic><topic>Micromachining</topic><topic>MICROWAVE RADIATION</topic><topic>Multilayers</topic><topic>Q factors</topic><topic>QUALITY FACTOR</topic><topic>QUANTUM COMPUTERS</topic><topic>Quantum computing</topic><topic>QUANTUM ELECTRODYNAMICS</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>QUBITS</topic><topic>Qubits (quantum computing)</topic><topic>Seams</topic><topic>SUPERCONDUCTING CAVITY RESONATORS</topic><topic>Superconductivity</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brecht, T.</creatorcontrib><creatorcontrib>Reagor, M.</creatorcontrib><creatorcontrib>Chu, Y.</creatorcontrib><creatorcontrib>Pfaff, W.</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Frunzio, L.</creatorcontrib><creatorcontrib>Devoret, M. H.</creatorcontrib><creatorcontrib>Schoelkopf, R. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brecht, T.</au><au>Reagor, M.</au><au>Chu, Y.</au><au>Pfaff, W.</au><au>Wang, C.</au><au>Frunzio, L.</au><au>Devoret, M. H.</au><au>Schoelkopf, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of superconducting micromachined cavities</atitle><jtitle>Applied physics letters</jtitle><date>2015-11-09</date><risdate>2015</risdate><volume>107</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4935541</doi><orcidid>https://orcid.org/0000-0002-4408-2349</orcidid><orcidid>https://orcid.org/0000-0003-4303-0819</orcidid><orcidid>https://orcid.org/0000-0003-4488-7056</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2015-11, Vol.107 (19) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22486055 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | APERTURES Applied physics Cavity resonators CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computation Conductors Enclosures INDIUM Machining Micromachining MICROWAVE RADIATION Multilayers Q factors QUALITY FACTOR QUANTUM COMPUTERS Quantum computing QUANTUM ELECTRODYNAMICS Quantum phenomena Quantum theory QUBITS Qubits (quantum computing) Seams SUPERCONDUCTING CAVITY RESONATORS Superconductivity Transmission lines |
title | Demonstration of superconducting micromachined cavities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%20superconducting%20micromachined%20cavities&rft.jtitle=Applied%20physics%20letters&rft.au=Brecht,%20T.&rft.date=2015-11-09&rft.volume=107&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4935541&rft_dat=%3Cproquest_osti_%3E2123847903%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123847903&rft_id=info:pmid/&rfr_iscdi=true |