Loading…

Demonstration of superconducting micromachined cavities

Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfa...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2015-11, Vol.107 (19)
Main Authors: Brecht, T., Reagor, M., Chu, Y., Pfaff, W., Wang, C., Frunzio, L., Devoret, M. H., Schoelkopf, R. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73
cites cdi_FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73
container_end_page
container_issue 19
container_start_page
container_title Applied physics letters
container_volume 107
creator Brecht, T.
Reagor, M.
Chu, Y.
Pfaff, W.
Wang, C.
Frunzio, L.
Devoret, M. H.
Schoelkopf, R. J.
description Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.
doi_str_mv 10.1063/1.4935541
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22486055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123847903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhIMoWKsH_8GCJw9b8-Z7j1I_oeBFzyEmWZviJmuSFfz3rrTgaRh4GGYGoUvAK8CC3sCKdZRzBkdoAVjKlgKoY7TAGNNWdBxO0Vkpu9lyQukCyTs_pFhqNjWk2KS-KdPos03RTbaG-NEMweY0GLsN0bvGmu9Qgy_n6KQ3n8VfHHSJ3h7uX9dP7ebl8Xl9u2ktVaK23irG34FiopiR3IPtVUdcZ70T3IHiTmHhoLeKg5HSWcIEIb1yhngmnaRLdLXPTaUGXWyo3m7ndtHbqglhSmDO_6kxp6_Jl6p3acpxLqYJEKqY7DCdqes9NQ8qJftejzkMJv9owPrvPQ368B79Be4rYDY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123847903</pqid></control><display><type>article</type><title>Demonstration of superconducting micromachined cavities</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Brecht, T. ; Reagor, M. ; Chu, Y. ; Pfaff, W. ; Wang, C. ; Frunzio, L. ; Devoret, M. H. ; Schoelkopf, R. J.</creator><creatorcontrib>Brecht, T. ; Reagor, M. ; Chu, Y. ; Pfaff, W. ; Wang, C. ; Frunzio, L. ; Devoret, M. H. ; Schoelkopf, R. J.</creatorcontrib><description>Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4935541</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>APERTURES ; Applied physics ; Cavity resonators ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computation ; Conductors ; Enclosures ; INDIUM ; Machining ; Micromachining ; MICROWAVE RADIATION ; Multilayers ; Q factors ; QUALITY FACTOR ; QUANTUM COMPUTERS ; Quantum computing ; QUANTUM ELECTRODYNAMICS ; Quantum phenomena ; Quantum theory ; QUBITS ; Qubits (quantum computing) ; Seams ; SUPERCONDUCTING CAVITY RESONATORS ; Superconductivity ; Transmission lines</subject><ispartof>Applied physics letters, 2015-11, Vol.107 (19)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73</citedby><cites>FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73</cites><orcidid>0000-0002-4408-2349 ; 0000-0003-4303-0819 ; 0000-0003-4488-7056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22486055$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brecht, T.</creatorcontrib><creatorcontrib>Reagor, M.</creatorcontrib><creatorcontrib>Chu, Y.</creatorcontrib><creatorcontrib>Pfaff, W.</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Frunzio, L.</creatorcontrib><creatorcontrib>Devoret, M. H.</creatorcontrib><creatorcontrib>Schoelkopf, R. J.</creatorcontrib><title>Demonstration of superconducting micromachined cavities</title><title>Applied physics letters</title><description>Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.</description><subject>APERTURES</subject><subject>Applied physics</subject><subject>Cavity resonators</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computation</subject><subject>Conductors</subject><subject>Enclosures</subject><subject>INDIUM</subject><subject>Machining</subject><subject>Micromachining</subject><subject>MICROWAVE RADIATION</subject><subject>Multilayers</subject><subject>Q factors</subject><subject>QUALITY FACTOR</subject><subject>QUANTUM COMPUTERS</subject><subject>Quantum computing</subject><subject>QUANTUM ELECTRODYNAMICS</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>QUBITS</subject><subject>Qubits (quantum computing)</subject><subject>Seams</subject><subject>SUPERCONDUCTING CAVITY RESONATORS</subject><subject>Superconductivity</subject><subject>Transmission lines</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEYhIMoWKsH_8GCJw9b8-Z7j1I_oeBFzyEmWZviJmuSFfz3rrTgaRh4GGYGoUvAK8CC3sCKdZRzBkdoAVjKlgKoY7TAGNNWdBxO0Vkpu9lyQukCyTs_pFhqNjWk2KS-KdPos03RTbaG-NEMweY0GLsN0bvGmu9Qgy_n6KQ3n8VfHHSJ3h7uX9dP7ebl8Xl9u2ktVaK23irG34FiopiR3IPtVUdcZ70T3IHiTmHhoLeKg5HSWcIEIb1yhngmnaRLdLXPTaUGXWyo3m7ndtHbqglhSmDO_6kxp6_Jl6p3acpxLqYJEKqY7DCdqes9NQ8qJftejzkMJv9owPrvPQ368B79Be4rYDY</recordid><startdate>20151109</startdate><enddate>20151109</enddate><creator>Brecht, T.</creator><creator>Reagor, M.</creator><creator>Chu, Y.</creator><creator>Pfaff, W.</creator><creator>Wang, C.</creator><creator>Frunzio, L.</creator><creator>Devoret, M. H.</creator><creator>Schoelkopf, R. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4408-2349</orcidid><orcidid>https://orcid.org/0000-0003-4303-0819</orcidid><orcidid>https://orcid.org/0000-0003-4488-7056</orcidid></search><sort><creationdate>20151109</creationdate><title>Demonstration of superconducting micromachined cavities</title><author>Brecht, T. ; Reagor, M. ; Chu, Y. ; Pfaff, W. ; Wang, C. ; Frunzio, L. ; Devoret, M. H. ; Schoelkopf, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>APERTURES</topic><topic>Applied physics</topic><topic>Cavity resonators</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computation</topic><topic>Conductors</topic><topic>Enclosures</topic><topic>INDIUM</topic><topic>Machining</topic><topic>Micromachining</topic><topic>MICROWAVE RADIATION</topic><topic>Multilayers</topic><topic>Q factors</topic><topic>QUALITY FACTOR</topic><topic>QUANTUM COMPUTERS</topic><topic>Quantum computing</topic><topic>QUANTUM ELECTRODYNAMICS</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>QUBITS</topic><topic>Qubits (quantum computing)</topic><topic>Seams</topic><topic>SUPERCONDUCTING CAVITY RESONATORS</topic><topic>Superconductivity</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brecht, T.</creatorcontrib><creatorcontrib>Reagor, M.</creatorcontrib><creatorcontrib>Chu, Y.</creatorcontrib><creatorcontrib>Pfaff, W.</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Frunzio, L.</creatorcontrib><creatorcontrib>Devoret, M. H.</creatorcontrib><creatorcontrib>Schoelkopf, R. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brecht, T.</au><au>Reagor, M.</au><au>Chu, Y.</au><au>Pfaff, W.</au><au>Wang, C.</au><au>Frunzio, L.</au><au>Devoret, M. H.</au><au>Schoelkopf, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of superconducting micromachined cavities</atitle><jtitle>Applied physics letters</jtitle><date>2015-11-09</date><risdate>2015</risdate><volume>107</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4935541</doi><orcidid>https://orcid.org/0000-0002-4408-2349</orcidid><orcidid>https://orcid.org/0000-0003-4303-0819</orcidid><orcidid>https://orcid.org/0000-0003-4488-7056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-11, Vol.107 (19)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22486055
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects APERTURES
Applied physics
Cavity resonators
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computation
Conductors
Enclosures
INDIUM
Machining
Micromachining
MICROWAVE RADIATION
Multilayers
Q factors
QUALITY FACTOR
QUANTUM COMPUTERS
Quantum computing
QUANTUM ELECTRODYNAMICS
Quantum phenomena
Quantum theory
QUBITS
Qubits (quantum computing)
Seams
SUPERCONDUCTING CAVITY RESONATORS
Superconductivity
Transmission lines
title Demonstration of superconducting micromachined cavities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%20superconducting%20micromachined%20cavities&rft.jtitle=Applied%20physics%20letters&rft.au=Brecht,%20T.&rft.date=2015-11-09&rft.volume=107&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4935541&rft_dat=%3Cproquest_osti_%3E2123847903%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-ec845b130284a75e1cf892d9ced65d185d806d1fc851a77dc24622f8da2e47d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123847903&rft_id=info:pmid/&rfr_iscdi=true