Loading…
How to decide between competing efficiency droop models for GaN-based light-emitting diodes
GaN-based light-emitting diodes (LEDs) exhibit a strong efficiency droop with higher current injection, which has been mainly attributed to Auger recombination and electron leakage, respectively. Thus far, the few reports on direct measurements of these two processes do not confirm their dominating...
Saved in:
Published in: | Applied physics letters 2015-07, Vol.107 (3) |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | GaN-based light-emitting diodes (LEDs) exhibit a strong efficiency droop with higher current injection, which has been mainly attributed to Auger recombination and electron leakage, respectively. Thus far, the few reports on direct measurements of these two processes do not confirm their dominating influence on the droop unambiguously. Advanced numerical simulations of experimental characteristics are shown to validate one or the other explanation by variation of uncertain material parameters. We finally demonstrate how the comparative simulation of temperature effects enables a clear distinction between both models. Contrary to common assumptions, the consistently measured efficiency reduction of blue LEDs with higher ambient temperature eliminates electron leakage as primary cause of the efficiency droop in these devices. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4927202 |