Loading…
Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations
A phase diagram for the Y–Y{sub 2}Se{sub 3} system has been constructed in which the YSe and Y{sub 2}Se{sub 3} phases melt congruently. The daltonide type YSe phase (ST Y{sub 0,75}Se, a=1.1393 nm, melting point=2380 K, H=2200 MPa) forms a double-sided solid solution from 49–50–53 at% Se. In the 50–5...
Saved in:
Published in: | Journal of solid state chemistry 2015-10, Vol.230 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of solid state chemistry |
container_volume | 230 |
creator | Andreev, O.V. Kharitontsev, V.B. Polkovnikov, A.A. Elyshev, A.V. Andreev, P.O. |
description | A phase diagram for the Y–Y{sub 2}Se{sub 3} system has been constructed in which the YSe and Y{sub 2}Se{sub 3} phases melt congruently. The daltonide type YSe phase (ST Y{sub 0,75}Se, a=1.1393 nm, melting point=2380 K, H=2200 MPa) forms a double-sided solid solution from 49–50–53 at% Se. In the 50–53 at% Se range, the unit cell parameter increases to 1.1500 nm, the microhardness increases to 4100 MPa and electrical resistivity increases from 0.018 to 0.114 Ω m. These changes are caused by the dominating influx of newly formed structural cationic vacancies arising from the selenium anions that are surplus for the 1:1 Y:Se stoichiometry. The full-valence Y{sub 2}Se{sub 3} composition exists as a low-temperature modification of ε-Y{sub 2}Se{sub 3} (ST Sc{sub 2}S{sub 3}, a=1.145 nm, b=0.818 nm, c=2.438 nm, melting point=1780 K, ∆fusion enthalpy=4±0.4 J/g) and transforms into a modification of ξ-Y{sub 2}Se{sub 3} that does not undergo fixing by thermo-hardening. The eutectic melting point between the YSe and Y{sub 2}Se{sub 3} phases is 1625±5 K, with a eutectic composition that is assumed to be 57.5 at% Se and have an enthalpy of fusion of 43±4.3 J/g. The eutectic for the Y and YSe phases appears at a temperature of 1600 K and 5 at% Se. - Highlights: • Phase equilibria in the Y–Y{sub 2}Se{sub 3} system from 1000 K to melt were studies. • High-temperature polymorphic transition for Y{sub 2}Se{sub 3} were observed. • Singular points in solid solutions areas for YSe and Y{sub 2}Se{sub 3} were found. |
doi_str_mv | 10.1016/J.JSSC.2015.06.042 |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22486806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22486806</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_224868063</originalsourceid><addsrcrecordid>eNqNjEFqAjEUQEOx0FF7ga4CbjvxJ87EcS2V4koYEV1JOv3TiTiJzI8LEcE7eENPIkoP4Oq9xeMx9iFBSJC6PxXTPB8LBTIVoAUk6oVFEkZpPFR62WIRgFJxko70G2sTbQCkTLMkYotZZQj5rzV_jam5L3mokK-u58vqSPsfrk45PmRw4nSggPUnRxcqs91ZpHu_ewxCYxyVvqlNsN5Rl72WZkv4_s8O602-5uPv2FOwaypswKIqvHNYhLVSSaYz0IPnqhurTUlp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations</title><source>Elsevier</source><creator>Andreev, O.V. ; Kharitontsev, V.B. ; Polkovnikov, A.A. ; Elyshev, A.V. ; Andreev, P.O.</creator><creatorcontrib>Andreev, O.V. ; Kharitontsev, V.B. ; Polkovnikov, A.A. ; Elyshev, A.V. ; Andreev, P.O.</creatorcontrib><description>A phase diagram for the Y–Y{sub 2}Se{sub 3} system has been constructed in which the YSe and Y{sub 2}Se{sub 3} phases melt congruently. The daltonide type YSe phase (ST Y{sub 0,75}Se, a=1.1393 nm, melting point=2380 K, H=2200 MPa) forms a double-sided solid solution from 49–50–53 at% Se. In the 50–53 at% Se range, the unit cell parameter increases to 1.1500 nm, the microhardness increases to 4100 MPa and electrical resistivity increases from 0.018 to 0.114 Ω m. These changes are caused by the dominating influx of newly formed structural cationic vacancies arising from the selenium anions that are surplus for the 1:1 Y:Se stoichiometry. The full-valence Y{sub 2}Se{sub 3} composition exists as a low-temperature modification of ε-Y{sub 2}Se{sub 3} (ST Sc{sub 2}S{sub 3}, a=1.145 nm, b=0.818 nm, c=2.438 nm, melting point=1780 K, ∆fusion enthalpy=4±0.4 J/g) and transforms into a modification of ξ-Y{sub 2}Se{sub 3} that does not undergo fixing by thermo-hardening. The eutectic melting point between the YSe and Y{sub 2}Se{sub 3} phases is 1625±5 K, with a eutectic composition that is assumed to be 57.5 at% Se and have an enthalpy of fusion of 43±4.3 J/g. The eutectic for the Y and YSe phases appears at a temperature of 1600 K and 5 at% Se. - Highlights: • Phase equilibria in the Y–Y{sub 2}Se{sub 3} system from 1000 K to melt were studies. • High-temperature polymorphic transition for Y{sub 2}Se{sub 3} were observed. • Singular points in solid solutions areas for YSe and Y{sub 2}Se{sub 3} were found.</description><identifier>ISSN: 0022-4596</identifier><identifier>EISSN: 1095-726X</identifier><identifier>DOI: 10.1016/J.JSSC.2015.06.042</identifier><language>eng</language><publisher>United States</publisher><subject>ANIONS ; ELECTRIC CONDUCTIVITY ; EUTECTICS ; FUSION HEAT ; HARDENING ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LATTICE PARAMETERS ; MELTING ; MELTING POINTS ; MICROHARDNESS ; PHASE DIAGRAMS ; PHASE TRANSFORMATIONS ; SAMARIUM ; SELENIUM ; SOLID SOLUTIONS ; TEMPERATURE DEPENDENCE ; THERMAL ANALYSIS ; VACANCIES ; VALENCE ; YTTRIUM SELENIDES</subject><ispartof>Journal of solid state chemistry, 2015-10, Vol.230</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22486806$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreev, O.V.</creatorcontrib><creatorcontrib>Kharitontsev, V.B.</creatorcontrib><creatorcontrib>Polkovnikov, A.A.</creatorcontrib><creatorcontrib>Elyshev, A.V.</creatorcontrib><creatorcontrib>Andreev, P.O.</creatorcontrib><title>Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations</title><title>Journal of solid state chemistry</title><description>A phase diagram for the Y–Y{sub 2}Se{sub 3} system has been constructed in which the YSe and Y{sub 2}Se{sub 3} phases melt congruently. The daltonide type YSe phase (ST Y{sub 0,75}Se, a=1.1393 nm, melting point=2380 K, H=2200 MPa) forms a double-sided solid solution from 49–50–53 at% Se. In the 50–53 at% Se range, the unit cell parameter increases to 1.1500 nm, the microhardness increases to 4100 MPa and electrical resistivity increases from 0.018 to 0.114 Ω m. These changes are caused by the dominating influx of newly formed structural cationic vacancies arising from the selenium anions that are surplus for the 1:1 Y:Se stoichiometry. The full-valence Y{sub 2}Se{sub 3} composition exists as a low-temperature modification of ε-Y{sub 2}Se{sub 3} (ST Sc{sub 2}S{sub 3}, a=1.145 nm, b=0.818 nm, c=2.438 nm, melting point=1780 K, ∆fusion enthalpy=4±0.4 J/g) and transforms into a modification of ξ-Y{sub 2}Se{sub 3} that does not undergo fixing by thermo-hardening. The eutectic melting point between the YSe and Y{sub 2}Se{sub 3} phases is 1625±5 K, with a eutectic composition that is assumed to be 57.5 at% Se and have an enthalpy of fusion of 43±4.3 J/g. The eutectic for the Y and YSe phases appears at a temperature of 1600 K and 5 at% Se. - Highlights: • Phase equilibria in the Y–Y{sub 2}Se{sub 3} system from 1000 K to melt were studies. • High-temperature polymorphic transition for Y{sub 2}Se{sub 3} were observed. • Singular points in solid solutions areas for YSe and Y{sub 2}Se{sub 3} were found.</description><subject>ANIONS</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>EUTECTICS</subject><subject>FUSION HEAT</subject><subject>HARDENING</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LATTICE PARAMETERS</subject><subject>MELTING</subject><subject>MELTING POINTS</subject><subject>MICROHARDNESS</subject><subject>PHASE DIAGRAMS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>SAMARIUM</subject><subject>SELENIUM</subject><subject>SOLID SOLUTIONS</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>THERMAL ANALYSIS</subject><subject>VACANCIES</subject><subject>VALENCE</subject><subject>YTTRIUM SELENIDES</subject><issn>0022-4596</issn><issn>1095-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNjEFqAjEUQEOx0FF7ga4CbjvxJ87EcS2V4koYEV1JOv3TiTiJzI8LEcE7eENPIkoP4Oq9xeMx9iFBSJC6PxXTPB8LBTIVoAUk6oVFEkZpPFR62WIRgFJxko70G2sTbQCkTLMkYotZZQj5rzV_jam5L3mokK-u58vqSPsfrk45PmRw4nSggPUnRxcqs91ZpHu_ewxCYxyVvqlNsN5Rl72WZkv4_s8O602-5uPv2FOwaypswKIqvHNYhLVSSaYz0IPnqhurTUlp</recordid><startdate>20151015</startdate><enddate>20151015</enddate><creator>Andreev, O.V.</creator><creator>Kharitontsev, V.B.</creator><creator>Polkovnikov, A.A.</creator><creator>Elyshev, A.V.</creator><creator>Andreev, P.O.</creator><scope>OTOTI</scope></search><sort><creationdate>20151015</creationdate><title>Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations</title><author>Andreev, O.V. ; Kharitontsev, V.B. ; Polkovnikov, A.A. ; Elyshev, A.V. ; Andreev, P.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_224868063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ANIONS</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>EUTECTICS</topic><topic>FUSION HEAT</topic><topic>HARDENING</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LATTICE PARAMETERS</topic><topic>MELTING</topic><topic>MELTING POINTS</topic><topic>MICROHARDNESS</topic><topic>PHASE DIAGRAMS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>SAMARIUM</topic><topic>SELENIUM</topic><topic>SOLID SOLUTIONS</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>THERMAL ANALYSIS</topic><topic>VACANCIES</topic><topic>VALENCE</topic><topic>YTTRIUM SELENIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreev, O.V.</creatorcontrib><creatorcontrib>Kharitontsev, V.B.</creatorcontrib><creatorcontrib>Polkovnikov, A.A.</creatorcontrib><creatorcontrib>Elyshev, A.V.</creatorcontrib><creatorcontrib>Andreev, P.O.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of solid state chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreev, O.V.</au><au>Kharitontsev, V.B.</au><au>Polkovnikov, A.A.</au><au>Elyshev, A.V.</au><au>Andreev, P.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations</atitle><jtitle>Journal of solid state chemistry</jtitle><date>2015-10-15</date><risdate>2015</risdate><volume>230</volume><issn>0022-4596</issn><eissn>1095-726X</eissn><abstract>A phase diagram for the Y–Y{sub 2}Se{sub 3} system has been constructed in which the YSe and Y{sub 2}Se{sub 3} phases melt congruently. The daltonide type YSe phase (ST Y{sub 0,75}Se, a=1.1393 nm, melting point=2380 K, H=2200 MPa) forms a double-sided solid solution from 49–50–53 at% Se. In the 50–53 at% Se range, the unit cell parameter increases to 1.1500 nm, the microhardness increases to 4100 MPa and electrical resistivity increases from 0.018 to 0.114 Ω m. These changes are caused by the dominating influx of newly formed structural cationic vacancies arising from the selenium anions that are surplus for the 1:1 Y:Se stoichiometry. The full-valence Y{sub 2}Se{sub 3} composition exists as a low-temperature modification of ε-Y{sub 2}Se{sub 3} (ST Sc{sub 2}S{sub 3}, a=1.145 nm, b=0.818 nm, c=2.438 nm, melting point=1780 K, ∆fusion enthalpy=4±0.4 J/g) and transforms into a modification of ξ-Y{sub 2}Se{sub 3} that does not undergo fixing by thermo-hardening. The eutectic melting point between the YSe and Y{sub 2}Se{sub 3} phases is 1625±5 K, with a eutectic composition that is assumed to be 57.5 at% Se and have an enthalpy of fusion of 43±4.3 J/g. The eutectic for the Y and YSe phases appears at a temperature of 1600 K and 5 at% Se. - Highlights: • Phase equilibria in the Y–Y{sub 2}Se{sub 3} system from 1000 K to melt were studies. • High-temperature polymorphic transition for Y{sub 2}Se{sub 3} were observed. • Singular points in solid solutions areas for YSe and Y{sub 2}Se{sub 3} were found.</abstract><cop>United States</cop><doi>10.1016/J.JSSC.2015.06.042</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4596 |
ispartof | Journal of solid state chemistry, 2015-10, Vol.230 |
issn | 0022-4596 1095-726X |
language | eng |
recordid | cdi_osti_scitechconnect_22486806 |
source | Elsevier |
subjects | ANIONS ELECTRIC CONDUCTIVITY EUTECTICS FUSION HEAT HARDENING INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY LATTICE PARAMETERS MELTING MELTING POINTS MICROHARDNESS PHASE DIAGRAMS PHASE TRANSFORMATIONS SAMARIUM SELENIUM SOLID SOLUTIONS TEMPERATURE DEPENDENCE THERMAL ANALYSIS VACANCIES VALENCE YTTRIUM SELENIDES |
title | Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20diagram%20of%20the%20Y%E2%80%93Y%7Bsub%202%7DSe%7Bsub%203%7D%20system,%20enthalpies%20of%20phase%20transformations&rft.jtitle=Journal%20of%20solid%20state%20chemistry&rft.au=Andreev,%20O.V.&rft.date=2015-10-15&rft.volume=230&rft.issn=0022-4596&rft.eissn=1095-726X&rft_id=info:doi/10.1016/J.JSSC.2015.06.042&rft_dat=%3Costi%3E22486806%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_224868063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |