Loading…

Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations

A phase diagram for the Y–Y{sub 2}Se{sub 3} system has been constructed in which the YSe and Y{sub 2}Se{sub 3} phases melt congruently. The daltonide type YSe phase (ST Y{sub 0,75}Se, a=1.1393 nm, melting point=2380 K, H=2200 MPa) forms a double-sided solid solution from 49–50–53 at% Se. In the 50–5...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solid state chemistry 2015-10, Vol.230
Main Authors: Andreev, O.V., Kharitontsev, V.B., Polkovnikov, A.A., Elyshev, A.V., Andreev, P.O.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title Journal of solid state chemistry
container_volume 230
creator Andreev, O.V.
Kharitontsev, V.B.
Polkovnikov, A.A.
Elyshev, A.V.
Andreev, P.O.
description A phase diagram for the Y–Y{sub 2}Se{sub 3} system has been constructed in which the YSe and Y{sub 2}Se{sub 3} phases melt congruently. The daltonide type YSe phase (ST Y{sub 0,75}Se, a=1.1393 nm, melting point=2380 K, H=2200 MPa) forms a double-sided solid solution from 49–50–53 at% Se. In the 50–53 at% Se range, the unit cell parameter increases to 1.1500 nm, the microhardness increases to 4100 MPa and electrical resistivity increases from 0.018 to 0.114 Ω m. These changes are caused by the dominating influx of newly formed structural cationic vacancies arising from the selenium anions that are surplus for the 1:1 Y:Se stoichiometry. The full-valence Y{sub 2}Se{sub 3} composition exists as a low-temperature modification of ε-Y{sub 2}Se{sub 3} (ST Sc{sub 2}S{sub 3}, a=1.145 nm, b=0.818 nm, c=2.438 nm, melting point=1780 K, ∆fusion enthalpy=4±0.4 J/g) and transforms into a modification of ξ-Y{sub 2}Se{sub 3} that does not undergo fixing by thermo-hardening. The eutectic melting point between the YSe and Y{sub 2}Se{sub 3} phases is 1625±5 K, with a eutectic composition that is assumed to be 57.5 at% Se and have an enthalpy of fusion of 43±4.3 J/g. The eutectic for the Y and YSe phases appears at a temperature of 1600 K and 5 at% Se. - Highlights: • Phase equilibria in the Y–Y{sub 2}Se{sub 3} system from 1000 K to melt were studies. • High-temperature polymorphic transition for Y{sub 2}Se{sub 3} were observed. • Singular points in solid solutions areas for YSe and Y{sub 2}Se{sub 3} were found.
doi_str_mv 10.1016/J.JSSC.2015.06.042
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22486806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22486806</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_224868063</originalsourceid><addsrcrecordid>eNqNjEFqAjEUQEOx0FF7ga4CbjvxJ87EcS2V4koYEV1JOv3TiTiJzI8LEcE7eENPIkoP4Oq9xeMx9iFBSJC6PxXTPB8LBTIVoAUk6oVFEkZpPFR62WIRgFJxko70G2sTbQCkTLMkYotZZQj5rzV_jam5L3mokK-u58vqSPsfrk45PmRw4nSggPUnRxcqs91ZpHu_ewxCYxyVvqlNsN5Rl72WZkv4_s8O602-5uPv2FOwaypswKIqvHNYhLVSSaYz0IPnqhurTUlp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations</title><source>Elsevier</source><creator>Andreev, O.V. ; Kharitontsev, V.B. ; Polkovnikov, A.A. ; Elyshev, A.V. ; Andreev, P.O.</creator><creatorcontrib>Andreev, O.V. ; Kharitontsev, V.B. ; Polkovnikov, A.A. ; Elyshev, A.V. ; Andreev, P.O.</creatorcontrib><description>A phase diagram for the Y–Y{sub 2}Se{sub 3} system has been constructed in which the YSe and Y{sub 2}Se{sub 3} phases melt congruently. The daltonide type YSe phase (ST Y{sub 0,75}Se, a=1.1393 nm, melting point=2380 K, H=2200 MPa) forms a double-sided solid solution from 49–50–53 at% Se. In the 50–53 at% Se range, the unit cell parameter increases to 1.1500 nm, the microhardness increases to 4100 MPa and electrical resistivity increases from 0.018 to 0.114 Ω m. These changes are caused by the dominating influx of newly formed structural cationic vacancies arising from the selenium anions that are surplus for the 1:1 Y:Se stoichiometry. The full-valence Y{sub 2}Se{sub 3} composition exists as a low-temperature modification of ε-Y{sub 2}Se{sub 3} (ST Sc{sub 2}S{sub 3}, a=1.145 nm, b=0.818 nm, c=2.438 nm, melting point=1780 K, ∆fusion enthalpy=4±0.4 J/g) and transforms into a modification of ξ-Y{sub 2}Se{sub 3} that does not undergo fixing by thermo-hardening. The eutectic melting point between the YSe and Y{sub 2}Se{sub 3} phases is 1625±5 K, with a eutectic composition that is assumed to be 57.5 at% Se and have an enthalpy of fusion of 43±4.3 J/g. The eutectic for the Y and YSe phases appears at a temperature of 1600 K and 5 at% Se. - Highlights: • Phase equilibria in the Y–Y{sub 2}Se{sub 3} system from 1000 K to melt were studies. • High-temperature polymorphic transition for Y{sub 2}Se{sub 3} were observed. • Singular points in solid solutions areas for YSe and Y{sub 2}Se{sub 3} were found.</description><identifier>ISSN: 0022-4596</identifier><identifier>EISSN: 1095-726X</identifier><identifier>DOI: 10.1016/J.JSSC.2015.06.042</identifier><language>eng</language><publisher>United States</publisher><subject>ANIONS ; ELECTRIC CONDUCTIVITY ; EUTECTICS ; FUSION HEAT ; HARDENING ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LATTICE PARAMETERS ; MELTING ; MELTING POINTS ; MICROHARDNESS ; PHASE DIAGRAMS ; PHASE TRANSFORMATIONS ; SAMARIUM ; SELENIUM ; SOLID SOLUTIONS ; TEMPERATURE DEPENDENCE ; THERMAL ANALYSIS ; VACANCIES ; VALENCE ; YTTRIUM SELENIDES</subject><ispartof>Journal of solid state chemistry, 2015-10, Vol.230</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22486806$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreev, O.V.</creatorcontrib><creatorcontrib>Kharitontsev, V.B.</creatorcontrib><creatorcontrib>Polkovnikov, A.A.</creatorcontrib><creatorcontrib>Elyshev, A.V.</creatorcontrib><creatorcontrib>Andreev, P.O.</creatorcontrib><title>Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations</title><title>Journal of solid state chemistry</title><description>A phase diagram for the Y–Y{sub 2}Se{sub 3} system has been constructed in which the YSe and Y{sub 2}Se{sub 3} phases melt congruently. The daltonide type YSe phase (ST Y{sub 0,75}Se, a=1.1393 nm, melting point=2380 K, H=2200 MPa) forms a double-sided solid solution from 49–50–53 at% Se. In the 50–53 at% Se range, the unit cell parameter increases to 1.1500 nm, the microhardness increases to 4100 MPa and electrical resistivity increases from 0.018 to 0.114 Ω m. These changes are caused by the dominating influx of newly formed structural cationic vacancies arising from the selenium anions that are surplus for the 1:1 Y:Se stoichiometry. The full-valence Y{sub 2}Se{sub 3} composition exists as a low-temperature modification of ε-Y{sub 2}Se{sub 3} (ST Sc{sub 2}S{sub 3}, a=1.145 nm, b=0.818 nm, c=2.438 nm, melting point=1780 K, ∆fusion enthalpy=4±0.4 J/g) and transforms into a modification of ξ-Y{sub 2}Se{sub 3} that does not undergo fixing by thermo-hardening. The eutectic melting point between the YSe and Y{sub 2}Se{sub 3} phases is 1625±5 K, with a eutectic composition that is assumed to be 57.5 at% Se and have an enthalpy of fusion of 43±4.3 J/g. The eutectic for the Y and YSe phases appears at a temperature of 1600 K and 5 at% Se. - Highlights: • Phase equilibria in the Y–Y{sub 2}Se{sub 3} system from 1000 K to melt were studies. • High-temperature polymorphic transition for Y{sub 2}Se{sub 3} were observed. • Singular points in solid solutions areas for YSe and Y{sub 2}Se{sub 3} were found.</description><subject>ANIONS</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>EUTECTICS</subject><subject>FUSION HEAT</subject><subject>HARDENING</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LATTICE PARAMETERS</subject><subject>MELTING</subject><subject>MELTING POINTS</subject><subject>MICROHARDNESS</subject><subject>PHASE DIAGRAMS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>SAMARIUM</subject><subject>SELENIUM</subject><subject>SOLID SOLUTIONS</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>THERMAL ANALYSIS</subject><subject>VACANCIES</subject><subject>VALENCE</subject><subject>YTTRIUM SELENIDES</subject><issn>0022-4596</issn><issn>1095-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNjEFqAjEUQEOx0FF7ga4CbjvxJ87EcS2V4koYEV1JOv3TiTiJzI8LEcE7eENPIkoP4Oq9xeMx9iFBSJC6PxXTPB8LBTIVoAUk6oVFEkZpPFR62WIRgFJxko70G2sTbQCkTLMkYotZZQj5rzV_jam5L3mokK-u58vqSPsfrk45PmRw4nSggPUnRxcqs91ZpHu_ewxCYxyVvqlNsN5Rl72WZkv4_s8O602-5uPv2FOwaypswKIqvHNYhLVSSaYz0IPnqhurTUlp</recordid><startdate>20151015</startdate><enddate>20151015</enddate><creator>Andreev, O.V.</creator><creator>Kharitontsev, V.B.</creator><creator>Polkovnikov, A.A.</creator><creator>Elyshev, A.V.</creator><creator>Andreev, P.O.</creator><scope>OTOTI</scope></search><sort><creationdate>20151015</creationdate><title>Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations</title><author>Andreev, O.V. ; Kharitontsev, V.B. ; Polkovnikov, A.A. ; Elyshev, A.V. ; Andreev, P.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_224868063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ANIONS</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>EUTECTICS</topic><topic>FUSION HEAT</topic><topic>HARDENING</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LATTICE PARAMETERS</topic><topic>MELTING</topic><topic>MELTING POINTS</topic><topic>MICROHARDNESS</topic><topic>PHASE DIAGRAMS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>SAMARIUM</topic><topic>SELENIUM</topic><topic>SOLID SOLUTIONS</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>THERMAL ANALYSIS</topic><topic>VACANCIES</topic><topic>VALENCE</topic><topic>YTTRIUM SELENIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreev, O.V.</creatorcontrib><creatorcontrib>Kharitontsev, V.B.</creatorcontrib><creatorcontrib>Polkovnikov, A.A.</creatorcontrib><creatorcontrib>Elyshev, A.V.</creatorcontrib><creatorcontrib>Andreev, P.O.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of solid state chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreev, O.V.</au><au>Kharitontsev, V.B.</au><au>Polkovnikov, A.A.</au><au>Elyshev, A.V.</au><au>Andreev, P.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations</atitle><jtitle>Journal of solid state chemistry</jtitle><date>2015-10-15</date><risdate>2015</risdate><volume>230</volume><issn>0022-4596</issn><eissn>1095-726X</eissn><abstract>A phase diagram for the Y–Y{sub 2}Se{sub 3} system has been constructed in which the YSe and Y{sub 2}Se{sub 3} phases melt congruently. The daltonide type YSe phase (ST Y{sub 0,75}Se, a=1.1393 nm, melting point=2380 K, H=2200 MPa) forms a double-sided solid solution from 49–50–53 at% Se. In the 50–53 at% Se range, the unit cell parameter increases to 1.1500 nm, the microhardness increases to 4100 MPa and electrical resistivity increases from 0.018 to 0.114 Ω m. These changes are caused by the dominating influx of newly formed structural cationic vacancies arising from the selenium anions that are surplus for the 1:1 Y:Se stoichiometry. The full-valence Y{sub 2}Se{sub 3} composition exists as a low-temperature modification of ε-Y{sub 2}Se{sub 3} (ST Sc{sub 2}S{sub 3}, a=1.145 nm, b=0.818 nm, c=2.438 nm, melting point=1780 K, ∆fusion enthalpy=4±0.4 J/g) and transforms into a modification of ξ-Y{sub 2}Se{sub 3} that does not undergo fixing by thermo-hardening. The eutectic melting point between the YSe and Y{sub 2}Se{sub 3} phases is 1625±5 K, with a eutectic composition that is assumed to be 57.5 at% Se and have an enthalpy of fusion of 43±4.3 J/g. The eutectic for the Y and YSe phases appears at a temperature of 1600 K and 5 at% Se. - Highlights: • Phase equilibria in the Y–Y{sub 2}Se{sub 3} system from 1000 K to melt were studies. • High-temperature polymorphic transition for Y{sub 2}Se{sub 3} were observed. • Singular points in solid solutions areas for YSe and Y{sub 2}Se{sub 3} were found.</abstract><cop>United States</cop><doi>10.1016/J.JSSC.2015.06.042</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-4596
ispartof Journal of solid state chemistry, 2015-10, Vol.230
issn 0022-4596
1095-726X
language eng
recordid cdi_osti_scitechconnect_22486806
source Elsevier
subjects ANIONS
ELECTRIC CONDUCTIVITY
EUTECTICS
FUSION HEAT
HARDENING
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
LATTICE PARAMETERS
MELTING
MELTING POINTS
MICROHARDNESS
PHASE DIAGRAMS
PHASE TRANSFORMATIONS
SAMARIUM
SELENIUM
SOLID SOLUTIONS
TEMPERATURE DEPENDENCE
THERMAL ANALYSIS
VACANCIES
VALENCE
YTTRIUM SELENIDES
title Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20diagram%20of%20the%20Y%E2%80%93Y%7Bsub%202%7DSe%7Bsub%203%7D%20system,%20enthalpies%20of%20phase%20transformations&rft.jtitle=Journal%20of%20solid%20state%20chemistry&rft.au=Andreev,%20O.V.&rft.date=2015-10-15&rft.volume=230&rft.issn=0022-4596&rft.eissn=1095-726X&rft_id=info:doi/10.1016/J.JSSC.2015.06.042&rft_dat=%3Costi%3E22486806%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_224868063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true