Loading…
Microwave-induced zero-resistance state in two-dimensional electron systems with unidirectional periodic modulation
In this study we fabricated lateral superlattices (LSLs) based on the selectively doped GaAs/AlAs heterostructures with a high-mobility two-dimensional (2D) electron gas. The LSLs were formed using the electron-beam lithography and lift-off techniques, which produced a set of metallic strips on top...
Saved in:
Published in: | Applied physics letters 2016-01, Vol.108 (1) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study we fabricated lateral superlattices (LSLs) based on the selectively doped GaAs/AlAs heterostructures with a high-mobility two-dimensional (2D) electron gas. The LSLs were formed using the electron-beam lithography and lift-off techniques, which produced a set of metallic strips on top of a heterojunction. The amplitude of the 2D electron gas modulation in the LSL was controlled by the gate voltage applied to the metallic strips. The LSLs with two different periods (a = 200 nm and 500 nm) were used to investigate the influence of microwave radiation with the frequency of 110–150 GHz on the 2D electron transport at the temperature T = 1.6 K in the magnetic field B |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4939453 |