Loading…
Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method
Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient c...
Saved in:
Published in: | The Journal of chemical physics 2015-11, Vol.143 (18), p.184107-184107 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43 |
---|---|
cites | cdi_FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43 |
container_end_page | 184107 |
container_issue | 18 |
container_start_page | 184107 |
container_title | The Journal of chemical physics |
container_volume | 143 |
creator | Lutsker, V Aradi, B Niehaus, T A |
description | Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data. |
doi_str_mv | 10.1063/1.4935095 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22493211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123848311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43</originalsourceid><addsrcrecordid>eNpNkU9rFTEUxYNY7Gt14ReQgJt2MTX_52UppWqh0I2uQyZz8yZ1JnkmmUK_vanvWYULWdxfTnLOQeg9JVeUKP6JXgnNJdHyFdpQstVdrzR5jTaEMNppRdQpOivlgRBCeybeoFOmpOqVUBv0eLvsZ1ggVltDitjGEQ8Q3bTY_BMnjy2eU9x12cYdYJdyBldhxH6N7vmCnXGIuE6AR4gl1Kf_N4MtDa1hN9VuCHEMcYcXqFMa36ITb-cC747nOfrx5eb79bfu7v7r7fXnu84JwWonBwuj2HKpe876gW6VApDeSdKGUmYFEK70qAjpuQRBvfUtAC60tMx7wc_Rx4NuKjWY4kIFN7kUY3NhGGuxMUobdXGg9jn9WqFUs4TiYJ5thLQWQ3vONWuP03-CL-hDWnMzWwyjjG_bZ_8IXh4ol1MpGbzZ59ASfTKUmOfKDDXHyhr74ai4DguML-TfjvhvS0KPkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123848311</pqid></control><display><type>article</type><title>Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Lutsker, V ; Aradi, B ; Niehaus, T A</creator><creatorcontrib>Lutsker, V ; Aradi, B ; Niehaus, T A</creatorcontrib><description>Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4935095</identifier><identifier>PMID: 26567646</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>AFFINITY ; BENCHMARKS ; Binding ; COMPARATIVE EVALUATIONS ; Computer simulation ; Cures ; DENSITY FUNCTIONAL METHOD ; Density functional theory ; Dependence ; ELECTRIC FIELDS ; First principles ; FUNCTIONALS ; IMPLEMENTATION ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; IONIZATION POTENTIAL ; Ionization potentials ; MOLECULES ; Organic chemistry ; THERMOCHEMICAL DIAGRAMS ; THERMOCHEMICAL PROCESSES ; Thermochemistry</subject><ispartof>The Journal of chemical physics, 2015-11, Vol.143 (18), p.184107-184107</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43</citedby><cites>FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26567646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22493211$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lutsker, V</creatorcontrib><creatorcontrib>Aradi, B</creatorcontrib><creatorcontrib>Niehaus, T A</creatorcontrib><title>Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.</description><subject>AFFINITY</subject><subject>BENCHMARKS</subject><subject>Binding</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computer simulation</subject><subject>Cures</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>Density functional theory</subject><subject>Dependence</subject><subject>ELECTRIC FIELDS</subject><subject>First principles</subject><subject>FUNCTIONALS</subject><subject>IMPLEMENTATION</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>IONIZATION POTENTIAL</subject><subject>Ionization potentials</subject><subject>MOLECULES</subject><subject>Organic chemistry</subject><subject>THERMOCHEMICAL DIAGRAMS</subject><subject>THERMOCHEMICAL PROCESSES</subject><subject>Thermochemistry</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkU9rFTEUxYNY7Gt14ReQgJt2MTX_52UppWqh0I2uQyZz8yZ1JnkmmUK_vanvWYULWdxfTnLOQeg9JVeUKP6JXgnNJdHyFdpQstVdrzR5jTaEMNppRdQpOivlgRBCeybeoFOmpOqVUBv0eLvsZ1ggVltDitjGEQ8Q3bTY_BMnjy2eU9x12cYdYJdyBldhxH6N7vmCnXGIuE6AR4gl1Kf_N4MtDa1hN9VuCHEMcYcXqFMa36ITb-cC747nOfrx5eb79bfu7v7r7fXnu84JwWonBwuj2HKpe876gW6VApDeSdKGUmYFEK70qAjpuQRBvfUtAC60tMx7wc_Rx4NuKjWY4kIFN7kUY3NhGGuxMUobdXGg9jn9WqFUs4TiYJ5thLQWQ3vONWuP03-CL-hDWnMzWwyjjG_bZ_8IXh4ol1MpGbzZ59ASfTKUmOfKDDXHyhr74ai4DguML-TfjvhvS0KPkw</recordid><startdate>20151114</startdate><enddate>20151114</enddate><creator>Lutsker, V</creator><creator>Aradi, B</creator><creator>Niehaus, T A</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20151114</creationdate><title>Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method</title><author>Lutsker, V ; Aradi, B ; Niehaus, T A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AFFINITY</topic><topic>BENCHMARKS</topic><topic>Binding</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computer simulation</topic><topic>Cures</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>Density functional theory</topic><topic>Dependence</topic><topic>ELECTRIC FIELDS</topic><topic>First principles</topic><topic>FUNCTIONALS</topic><topic>IMPLEMENTATION</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>IONIZATION POTENTIAL</topic><topic>Ionization potentials</topic><topic>MOLECULES</topic><topic>Organic chemistry</topic><topic>THERMOCHEMICAL DIAGRAMS</topic><topic>THERMOCHEMICAL PROCESSES</topic><topic>Thermochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lutsker, V</creatorcontrib><creatorcontrib>Aradi, B</creatorcontrib><creatorcontrib>Niehaus, T A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lutsker, V</au><au>Aradi, B</au><au>Niehaus, T A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-11-14</date><risdate>2015</risdate><volume>143</volume><issue>18</issue><spage>184107</spage><epage>184107</epage><pages>184107-184107</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26567646</pmid><doi>10.1063/1.4935095</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2015-11, Vol.143 (18), p.184107-184107 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22493211 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | AFFINITY BENCHMARKS Binding COMPARATIVE EVALUATIONS Computer simulation Cures DENSITY FUNCTIONAL METHOD Density functional theory Dependence ELECTRIC FIELDS First principles FUNCTIONALS IMPLEMENTATION INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY IONIZATION POTENTIAL Ionization potentials MOLECULES Organic chemistry THERMOCHEMICAL DIAGRAMS THERMOCHEMICAL PROCESSES Thermochemistry |
title | Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20and%20benchmark%20of%20a%20long-range%20corrected%20functional%20in%20the%20density%20functional%20based%20tight-binding%20method&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Lutsker,%20V&rft.date=2015-11-14&rft.volume=143&rft.issue=18&rft.spage=184107&rft.epage=184107&rft.pages=184107-184107&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4935095&rft_dat=%3Cproquest_osti_%3E2123848311%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123848311&rft_id=info:pmid/26567646&rfr_iscdi=true |