Loading…

Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method

Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient c...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2015-11, Vol.143 (18), p.184107-184107
Main Authors: Lutsker, V, Aradi, B, Niehaus, T A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43
cites cdi_FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43
container_end_page 184107
container_issue 18
container_start_page 184107
container_title The Journal of chemical physics
container_volume 143
creator Lutsker, V
Aradi, B
Niehaus, T A
description Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.
doi_str_mv 10.1063/1.4935095
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22493211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123848311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43</originalsourceid><addsrcrecordid>eNpNkU9rFTEUxYNY7Gt14ReQgJt2MTX_52UppWqh0I2uQyZz8yZ1JnkmmUK_vanvWYULWdxfTnLOQeg9JVeUKP6JXgnNJdHyFdpQstVdrzR5jTaEMNppRdQpOivlgRBCeybeoFOmpOqVUBv0eLvsZ1ggVltDitjGEQ8Q3bTY_BMnjy2eU9x12cYdYJdyBldhxH6N7vmCnXGIuE6AR4gl1Kf_N4MtDa1hN9VuCHEMcYcXqFMa36ITb-cC747nOfrx5eb79bfu7v7r7fXnu84JwWonBwuj2HKpe876gW6VApDeSdKGUmYFEK70qAjpuQRBvfUtAC60tMx7wc_Rx4NuKjWY4kIFN7kUY3NhGGuxMUobdXGg9jn9WqFUs4TiYJ5thLQWQ3vONWuP03-CL-hDWnMzWwyjjG_bZ_8IXh4ol1MpGbzZ59ASfTKUmOfKDDXHyhr74ai4DguML-TfjvhvS0KPkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123848311</pqid></control><display><type>article</type><title>Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Lutsker, V ; Aradi, B ; Niehaus, T A</creator><creatorcontrib>Lutsker, V ; Aradi, B ; Niehaus, T A</creatorcontrib><description>Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4935095</identifier><identifier>PMID: 26567646</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>AFFINITY ; BENCHMARKS ; Binding ; COMPARATIVE EVALUATIONS ; Computer simulation ; Cures ; DENSITY FUNCTIONAL METHOD ; Density functional theory ; Dependence ; ELECTRIC FIELDS ; First principles ; FUNCTIONALS ; IMPLEMENTATION ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; IONIZATION POTENTIAL ; Ionization potentials ; MOLECULES ; Organic chemistry ; THERMOCHEMICAL DIAGRAMS ; THERMOCHEMICAL PROCESSES ; Thermochemistry</subject><ispartof>The Journal of chemical physics, 2015-11, Vol.143 (18), p.184107-184107</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43</citedby><cites>FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,782,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26567646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22493211$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lutsker, V</creatorcontrib><creatorcontrib>Aradi, B</creatorcontrib><creatorcontrib>Niehaus, T A</creatorcontrib><title>Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.</description><subject>AFFINITY</subject><subject>BENCHMARKS</subject><subject>Binding</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computer simulation</subject><subject>Cures</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>Density functional theory</subject><subject>Dependence</subject><subject>ELECTRIC FIELDS</subject><subject>First principles</subject><subject>FUNCTIONALS</subject><subject>IMPLEMENTATION</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>IONIZATION POTENTIAL</subject><subject>Ionization potentials</subject><subject>MOLECULES</subject><subject>Organic chemistry</subject><subject>THERMOCHEMICAL DIAGRAMS</subject><subject>THERMOCHEMICAL PROCESSES</subject><subject>Thermochemistry</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkU9rFTEUxYNY7Gt14ReQgJt2MTX_52UppWqh0I2uQyZz8yZ1JnkmmUK_vanvWYULWdxfTnLOQeg9JVeUKP6JXgnNJdHyFdpQstVdrzR5jTaEMNppRdQpOivlgRBCeybeoFOmpOqVUBv0eLvsZ1ggVltDitjGEQ8Q3bTY_BMnjy2eU9x12cYdYJdyBldhxH6N7vmCnXGIuE6AR4gl1Kf_N4MtDa1hN9VuCHEMcYcXqFMa36ITb-cC747nOfrx5eb79bfu7v7r7fXnu84JwWonBwuj2HKpe876gW6VApDeSdKGUmYFEK70qAjpuQRBvfUtAC60tMx7wc_Rx4NuKjWY4kIFN7kUY3NhGGuxMUobdXGg9jn9WqFUs4TiYJ5thLQWQ3vONWuP03-CL-hDWnMzWwyjjG_bZ_8IXh4ol1MpGbzZ59ASfTKUmOfKDDXHyhr74ai4DguML-TfjvhvS0KPkw</recordid><startdate>20151114</startdate><enddate>20151114</enddate><creator>Lutsker, V</creator><creator>Aradi, B</creator><creator>Niehaus, T A</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20151114</creationdate><title>Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method</title><author>Lutsker, V ; Aradi, B ; Niehaus, T A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AFFINITY</topic><topic>BENCHMARKS</topic><topic>Binding</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computer simulation</topic><topic>Cures</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>Density functional theory</topic><topic>Dependence</topic><topic>ELECTRIC FIELDS</topic><topic>First principles</topic><topic>FUNCTIONALS</topic><topic>IMPLEMENTATION</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>IONIZATION POTENTIAL</topic><topic>Ionization potentials</topic><topic>MOLECULES</topic><topic>Organic chemistry</topic><topic>THERMOCHEMICAL DIAGRAMS</topic><topic>THERMOCHEMICAL PROCESSES</topic><topic>Thermochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lutsker, V</creatorcontrib><creatorcontrib>Aradi, B</creatorcontrib><creatorcontrib>Niehaus, T A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lutsker, V</au><au>Aradi, B</au><au>Niehaus, T A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-11-14</date><risdate>2015</risdate><volume>143</volume><issue>18</issue><spage>184107</spage><epage>184107</epage><pages>184107-184107</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26567646</pmid><doi>10.1063/1.4935095</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2015-11, Vol.143 (18), p.184107-184107
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22493211
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects AFFINITY
BENCHMARKS
Binding
COMPARATIVE EVALUATIONS
Computer simulation
Cures
DENSITY FUNCTIONAL METHOD
Density functional theory
Dependence
ELECTRIC FIELDS
First principles
FUNCTIONALS
IMPLEMENTATION
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
IONIZATION POTENTIAL
Ionization potentials
MOLECULES
Organic chemistry
THERMOCHEMICAL DIAGRAMS
THERMOCHEMICAL PROCESSES
Thermochemistry
title Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20and%20benchmark%20of%20a%20long-range%20corrected%20functional%20in%20the%20density%20functional%20based%20tight-binding%20method&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Lutsker,%20V&rft.date=2015-11-14&rft.volume=143&rft.issue=18&rft.spage=184107&rft.epage=184107&rft.pages=184107-184107&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4935095&rft_dat=%3Cproquest_osti_%3E2123848311%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-5baed483597327b1866ee5fc50c50112a4e0369d600735e41faf1083495a2ff43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123848311&rft_id=info:pmid/26567646&rfr_iscdi=true