Loading…

Constraining f ( T ) gravity in the Solar System

In the framework of f(T) theories of gravity, we solve the field equations for f(T)=T+α T{sup n} in the weak-field approximation and for spherical symmetry spacetime. Since f(T)=T corresponds to Teleparallel Gravity, which is equivalent to General Relativity, the non linearity of the Lagrangian are...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cosmology and astroparticle physics 2015-08, Vol.2015 (8), p.21-21
Main Authors: Iorio, Lorenzo, Radicella, Ninfa, Ruggiero, Matteo Luca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the framework of f(T) theories of gravity, we solve the field equations for f(T)=T+α T{sup n} in the weak-field approximation and for spherical symmetry spacetime. Since f(T)=T corresponds to Teleparallel Gravity, which is equivalent to General Relativity, the non linearity of the Lagrangian are expected to produce perturbations of the general relativistic solutions, parameterized by α. Hence, we use the f(T) solutions to model the gravitational field of the Sun and exploit data from accurate radio-tracking of spacecrafts orbiting Mercury and Saturn to infer preliminary bounds on the model parameter α and on the cosmological constant Λ.
ISSN:1475-7516
1475-7516
DOI:10.1088/1475-7516/2015/08/021