Loading…

TU‐EF‐304‐10: Efficient Multiscale Simulation of the Proton Relative Biological Effectiveness (RBE) for DNA Double Strand Break (DSB) Induction and Bio‐Effective Dose in the FLUKA Monte Carlo Radiation Transport Code

Purpose: One of the more critical initiating events for reproductive cell death is the creation of a DNA double strand break (DSB). In this study, we present a computationally efficient way to determine spatial variations in the relative biological effectiveness (RBE) of proton therapy beams within...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) 2015-06, Vol.42 (6Part33), p.3617-3617
Main Authors: Moskvin, V, Stewart, R, Tsiamas, P, Axente, M, Farr, J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3617
container_issue 6Part33
container_start_page 3617
container_title Medical physics (Lancaster)
container_volume 42
creator Moskvin, V
Stewart, R
Tsiamas, P
Axente, M
Farr, J
description Purpose: One of the more critical initiating events for reproductive cell death is the creation of a DNA double strand break (DSB). In this study, we present a computationally efficient way to determine spatial variations in the relative biological effectiveness (RBE) of proton therapy beams within the FLUKA Monte Carlo (MC) code. Methods: We used the independently tested Monte Carlo Damage Simulation (MCDS) developed by Stewart and colleagues (Radiat. Res. 176, 587–602 2011) to estimate the RBE for DSB induction of monoenergetic protons, tritium, deuterium, hellium‐3, hellium‐4 ions and delta‐electrons. The dose‐weighted (RBE) coefficients were incorporated into FLUKA to determine the equivalent ⁶°60Co γ‐ray dose for representative proton beams incident on cells in an aerobic and anoxic environment. Results: We found that the proton beam RBE for DSB induction at the tip of the Bragg peak, including primary and secondary particles, is close to 1.2. Furthermore, the RBE increases laterally to the beam axis at the area of Bragg peak. At the distal edge, the RBE is in the range from 1.3–1.4 for cells irradiated under aerobic conditions and may be as large as 1.5–1.8 for cells irradiated under anoxic conditions. Across the plateau region, the recorded RBE for DSB induction is 1.02 for aerobic cells and 1.05 for cells irradiated under anoxic conditions. The contribution to total effective dose from secondary heavy ions decreases with depth and is higher at shallow depths (e.g., at the surface of the skin). Conclusion: Multiscale simulation of the RBE for DSB induction provides useful insights into spatial variations in proton RBE within pristine Bragg peaks. This methodology is potentially useful for the biological optimization of proton therapy for the treatment of cancer. The study highlights the need to incorporate spatial variations in proton RBE into proton therapy treatment plans.
doi_str_mv 10.1118/1.4925665
format article
fullrecord <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22565370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP5665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1005-d31215826ee10d490eed49f3edf896e002849d1fa6aeb90e2d02a51ed8d2cc153</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxiMEEkvLgTcYiUv3kDJ24jThtn-h6i5U291z5NoTakjtyvaCeuMReETEk-DsliOXb-SZn7_5pMmyNwzPGWP1O3ZeNlxUlXiWjXh5UeQlx-Z5NkJsypyXKF5mr0L4iohVIXCU_d7u_vz8tVgmKbBMyvA9LLrOKEM2wnrfRxOU7AluzP2-l9E4C66DeEdw7V1Mrw0N7e8EU-N698UkenAgNTQthQBnm-liDJ3zMP80gbnb3w5-0UurYepJfoOz-c10DJdW79Vhw2Fi3BDtn1P6FwiMPaxernZXE1g7Gwlm0vcONlKbY7pt8g0PzkeYOU2n2YtO9oFeP9WTbLdcbGcf89XnD5ezySpXDFHkumCciZpXRAx12SBR0q4g3dVNRYi8LhvNOllJuk1TrpFLwUjXmivFRHGSvT36uhBNG5SJpO6Uszalb3k6iSguMFHjI6W8C8FT1z54cy_9Y8uwHQ7YsvbpgInNj-wP09Pj_8F2fX3g_wKqw547</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TU‐EF‐304‐10: Efficient Multiscale Simulation of the Proton Relative Biological Effectiveness (RBE) for DNA Double Strand Break (DSB) Induction and Bio‐Effective Dose in the FLUKA Monte Carlo Radiation Transport Code</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Moskvin, V ; Stewart, R ; Tsiamas, P ; Axente, M ; Farr, J</creator><creatorcontrib>Moskvin, V ; Stewart, R ; Tsiamas, P ; Axente, M ; Farr, J</creatorcontrib><description>Purpose: One of the more critical initiating events for reproductive cell death is the creation of a DNA double strand break (DSB). In this study, we present a computationally efficient way to determine spatial variations in the relative biological effectiveness (RBE) of proton therapy beams within the FLUKA Monte Carlo (MC) code. Methods: We used the independently tested Monte Carlo Damage Simulation (MCDS) developed by Stewart and colleagues (Radiat. Res. 176, 587–602 2011) to estimate the RBE for DSB induction of monoenergetic protons, tritium, deuterium, hellium‐3, hellium‐4 ions and delta‐electrons. The dose‐weighted (RBE) coefficients were incorporated into FLUKA to determine the equivalent ⁶°60Co γ‐ray dose for representative proton beams incident on cells in an aerobic and anoxic environment. Results: We found that the proton beam RBE for DSB induction at the tip of the Bragg peak, including primary and secondary particles, is close to 1.2. Furthermore, the RBE increases laterally to the beam axis at the area of Bragg peak. At the distal edge, the RBE is in the range from 1.3–1.4 for cells irradiated under aerobic conditions and may be as large as 1.5–1.8 for cells irradiated under anoxic conditions. Across the plateau region, the recorded RBE for DSB induction is 1.02 for aerobic cells and 1.05 for cells irradiated under anoxic conditions. The contribution to total effective dose from secondary heavy ions decreases with depth and is higher at shallow depths (e.g., at the surface of the skin). Conclusion: Multiscale simulation of the RBE for DSB induction provides useful insights into spatial variations in proton RBE within pristine Bragg peaks. This methodology is potentially useful for the biological optimization of proton therapy for the treatment of cancer. The study highlights the need to incorporate spatial variations in proton RBE into proton therapy treatment plans.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.4925665</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>60 APPLIED LIFE SCIENCES ; AEROBIC CONDITIONS ; Anoxic environments ; BRAGG CURVE ; DNA ; Dosimetry ; HEAVY IONS ; IRRADIATION ; Magnetic circular dichroism spectroscopy ; MONTE CARLO METHOD ; Monte Carlo methods ; NEOPLASMS ; PROTON BEAMS ; Proton therapy ; Protons ; RADIATION DOSES ; RADIATION PROTECTION AND DOSIMETRY ; RADIATION, THERMAL, AND OTHER ENVIRONMENTAL POLLUTANT EFFECTS ON LIVING ORGANISMS AND BIOLOGICAL MATERIALS ; RADIOTHERAPY ; RBE ; Schottky barriers ; SIMULATION ; Skin ; Spatial analysis ; STRAND BREAKS</subject><ispartof>Medical physics (Lancaster), 2015-06, Vol.42 (6Part33), p.3617-3617</ispartof><rights>2015 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22565370$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moskvin, V</creatorcontrib><creatorcontrib>Stewart, R</creatorcontrib><creatorcontrib>Tsiamas, P</creatorcontrib><creatorcontrib>Axente, M</creatorcontrib><creatorcontrib>Farr, J</creatorcontrib><title>TU‐EF‐304‐10: Efficient Multiscale Simulation of the Proton Relative Biological Effectiveness (RBE) for DNA Double Strand Break (DSB) Induction and Bio‐Effective Dose in the FLUKA Monte Carlo Radiation Transport Code</title><title>Medical physics (Lancaster)</title><description>Purpose: One of the more critical initiating events for reproductive cell death is the creation of a DNA double strand break (DSB). In this study, we present a computationally efficient way to determine spatial variations in the relative biological effectiveness (RBE) of proton therapy beams within the FLUKA Monte Carlo (MC) code. Methods: We used the independently tested Monte Carlo Damage Simulation (MCDS) developed by Stewart and colleagues (Radiat. Res. 176, 587–602 2011) to estimate the RBE for DSB induction of monoenergetic protons, tritium, deuterium, hellium‐3, hellium‐4 ions and delta‐electrons. The dose‐weighted (RBE) coefficients were incorporated into FLUKA to determine the equivalent ⁶°60Co γ‐ray dose for representative proton beams incident on cells in an aerobic and anoxic environment. Results: We found that the proton beam RBE for DSB induction at the tip of the Bragg peak, including primary and secondary particles, is close to 1.2. Furthermore, the RBE increases laterally to the beam axis at the area of Bragg peak. At the distal edge, the RBE is in the range from 1.3–1.4 for cells irradiated under aerobic conditions and may be as large as 1.5–1.8 for cells irradiated under anoxic conditions. Across the plateau region, the recorded RBE for DSB induction is 1.02 for aerobic cells and 1.05 for cells irradiated under anoxic conditions. The contribution to total effective dose from secondary heavy ions decreases with depth and is higher at shallow depths (e.g., at the surface of the skin). Conclusion: Multiscale simulation of the RBE for DSB induction provides useful insights into spatial variations in proton RBE within pristine Bragg peaks. This methodology is potentially useful for the biological optimization of proton therapy for the treatment of cancer. The study highlights the need to incorporate spatial variations in proton RBE into proton therapy treatment plans.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>AEROBIC CONDITIONS</subject><subject>Anoxic environments</subject><subject>BRAGG CURVE</subject><subject>DNA</subject><subject>Dosimetry</subject><subject>HEAVY IONS</subject><subject>IRRADIATION</subject><subject>Magnetic circular dichroism spectroscopy</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo methods</subject><subject>NEOPLASMS</subject><subject>PROTON BEAMS</subject><subject>Proton therapy</subject><subject>Protons</subject><subject>RADIATION DOSES</subject><subject>RADIATION PROTECTION AND DOSIMETRY</subject><subject>RADIATION, THERMAL, AND OTHER ENVIRONMENTAL POLLUTANT EFFECTS ON LIVING ORGANISMS AND BIOLOGICAL MATERIALS</subject><subject>RADIOTHERAPY</subject><subject>RBE</subject><subject>Schottky barriers</subject><subject>SIMULATION</subject><subject>Skin</subject><subject>Spatial analysis</subject><subject>STRAND BREAKS</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQxiMEEkvLgTcYiUv3kDJ24jThtn-h6i5U291z5NoTakjtyvaCeuMReETEk-DsliOXb-SZn7_5pMmyNwzPGWP1O3ZeNlxUlXiWjXh5UeQlx-Z5NkJsypyXKF5mr0L4iohVIXCU_d7u_vz8tVgmKbBMyvA9LLrOKEM2wnrfRxOU7AluzP2-l9E4C66DeEdw7V1Mrw0N7e8EU-N698UkenAgNTQthQBnm-liDJ3zMP80gbnb3w5-0UurYepJfoOz-c10DJdW79Vhw2Fi3BDtn1P6FwiMPaxernZXE1g7Gwlm0vcONlKbY7pt8g0PzkeYOU2n2YtO9oFeP9WTbLdcbGcf89XnD5ezySpXDFHkumCciZpXRAx12SBR0q4g3dVNRYi8LhvNOllJuk1TrpFLwUjXmivFRHGSvT36uhBNG5SJpO6Uszalb3k6iSguMFHjI6W8C8FT1z54cy_9Y8uwHQ7YsvbpgInNj-wP09Pj_8F2fX3g_wKqw547</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Moskvin, V</creator><creator>Stewart, R</creator><creator>Tsiamas, P</creator><creator>Axente, M</creator><creator>Farr, J</creator><general>American Association of Physicists in Medicine</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201506</creationdate><title>TU‐EF‐304‐10: Efficient Multiscale Simulation of the Proton Relative Biological Effectiveness (RBE) for DNA Double Strand Break (DSB) Induction and Bio‐Effective Dose in the FLUKA Monte Carlo Radiation Transport Code</title><author>Moskvin, V ; Stewart, R ; Tsiamas, P ; Axente, M ; Farr, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1005-d31215826ee10d490eed49f3edf896e002849d1fa6aeb90e2d02a51ed8d2cc153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>AEROBIC CONDITIONS</topic><topic>Anoxic environments</topic><topic>BRAGG CURVE</topic><topic>DNA</topic><topic>Dosimetry</topic><topic>HEAVY IONS</topic><topic>IRRADIATION</topic><topic>Magnetic circular dichroism spectroscopy</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo methods</topic><topic>NEOPLASMS</topic><topic>PROTON BEAMS</topic><topic>Proton therapy</topic><topic>Protons</topic><topic>RADIATION DOSES</topic><topic>RADIATION PROTECTION AND DOSIMETRY</topic><topic>RADIATION, THERMAL, AND OTHER ENVIRONMENTAL POLLUTANT EFFECTS ON LIVING ORGANISMS AND BIOLOGICAL MATERIALS</topic><topic>RADIOTHERAPY</topic><topic>RBE</topic><topic>Schottky barriers</topic><topic>SIMULATION</topic><topic>Skin</topic><topic>Spatial analysis</topic><topic>STRAND BREAKS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moskvin, V</creatorcontrib><creatorcontrib>Stewart, R</creatorcontrib><creatorcontrib>Tsiamas, P</creatorcontrib><creatorcontrib>Axente, M</creatorcontrib><creatorcontrib>Farr, J</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moskvin, V</au><au>Stewart, R</au><au>Tsiamas, P</au><au>Axente, M</au><au>Farr, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TU‐EF‐304‐10: Efficient Multiscale Simulation of the Proton Relative Biological Effectiveness (RBE) for DNA Double Strand Break (DSB) Induction and Bio‐Effective Dose in the FLUKA Monte Carlo Radiation Transport Code</atitle><jtitle>Medical physics (Lancaster)</jtitle><date>2015-06</date><risdate>2015</risdate><volume>42</volume><issue>6Part33</issue><spage>3617</spage><epage>3617</epage><pages>3617-3617</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose: One of the more critical initiating events for reproductive cell death is the creation of a DNA double strand break (DSB). In this study, we present a computationally efficient way to determine spatial variations in the relative biological effectiveness (RBE) of proton therapy beams within the FLUKA Monte Carlo (MC) code. Methods: We used the independently tested Monte Carlo Damage Simulation (MCDS) developed by Stewart and colleagues (Radiat. Res. 176, 587–602 2011) to estimate the RBE for DSB induction of monoenergetic protons, tritium, deuterium, hellium‐3, hellium‐4 ions and delta‐electrons. The dose‐weighted (RBE) coefficients were incorporated into FLUKA to determine the equivalent ⁶°60Co γ‐ray dose for representative proton beams incident on cells in an aerobic and anoxic environment. Results: We found that the proton beam RBE for DSB induction at the tip of the Bragg peak, including primary and secondary particles, is close to 1.2. Furthermore, the RBE increases laterally to the beam axis at the area of Bragg peak. At the distal edge, the RBE is in the range from 1.3–1.4 for cells irradiated under aerobic conditions and may be as large as 1.5–1.8 for cells irradiated under anoxic conditions. Across the plateau region, the recorded RBE for DSB induction is 1.02 for aerobic cells and 1.05 for cells irradiated under anoxic conditions. The contribution to total effective dose from secondary heavy ions decreases with depth and is higher at shallow depths (e.g., at the surface of the skin). Conclusion: Multiscale simulation of the RBE for DSB induction provides useful insights into spatial variations in proton RBE within pristine Bragg peaks. This methodology is potentially useful for the biological optimization of proton therapy for the treatment of cancer. The study highlights the need to incorporate spatial variations in proton RBE into proton therapy treatment plans.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><doi>10.1118/1.4925665</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2015-06, Vol.42 (6Part33), p.3617-3617
issn 0094-2405
2473-4209
language eng
recordid cdi_osti_scitechconnect_22565370
source Wiley-Blackwell Read & Publish Collection
subjects 60 APPLIED LIFE SCIENCES
AEROBIC CONDITIONS
Anoxic environments
BRAGG CURVE
DNA
Dosimetry
HEAVY IONS
IRRADIATION
Magnetic circular dichroism spectroscopy
MONTE CARLO METHOD
Monte Carlo methods
NEOPLASMS
PROTON BEAMS
Proton therapy
Protons
RADIATION DOSES
RADIATION PROTECTION AND DOSIMETRY
RADIATION, THERMAL, AND OTHER ENVIRONMENTAL POLLUTANT EFFECTS ON LIVING ORGANISMS AND BIOLOGICAL MATERIALS
RADIOTHERAPY
RBE
Schottky barriers
SIMULATION
Skin
Spatial analysis
STRAND BREAKS
title TU‐EF‐304‐10: Efficient Multiscale Simulation of the Proton Relative Biological Effectiveness (RBE) for DNA Double Strand Break (DSB) Induction and Bio‐Effective Dose in the FLUKA Monte Carlo Radiation Transport Code
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TU%E2%80%90EF%E2%80%90304%E2%80%9010:%20Efficient%20Multiscale%20Simulation%20of%20the%20Proton%20Relative%20Biological%20Effectiveness%20(RBE)%20for%20DNA%20Double%20Strand%20Break%20(DSB)%20Induction%20and%20Bio%E2%80%90Effective%20Dose%20in%20the%20FLUKA%20Monte%20Carlo%20Radiation%20Transport%20Code&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Moskvin,%20V&rft.date=2015-06&rft.volume=42&rft.issue=6Part33&rft.spage=3617&rft.epage=3617&rft.pages=3617-3617&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1118/1.4925665&rft_dat=%3Cwiley_osti_%3EMP5665%3C/wiley_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1005-d31215826ee10d490eed49f3edf896e002849d1fa6aeb90e2d02a51ed8d2cc153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true