Loading…

Hybrid quantum dot-tin disulfide field-effect transistors with improved photocurrent and spectral responsivity

We report an improved photosensitivity in few-layer tin disulfide (SnS{sub 2}) field-effect transistors (FETs) following doping with CdSe/ZnS core/shell quantum dots (QDs). The hybrid QD-SnS{sub 2} FET devices achieve more than 500% increase in the photocurrent response compared with the starting Sn...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2016-03, Vol.108 (12)
Main Authors: Huang, Yuan, Zang, Huidong, Nam, Chang-Yong, Chen, Jia-Shiang, Cotlet, Mircea, Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794, Sutter, Eli A., Sutter, Peter W.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page
container_title Applied physics letters
container_volume 108
creator Huang, Yuan
Zang, Huidong
Nam, Chang-Yong
Chen, Jia-Shiang
Cotlet, Mircea
Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794
Sutter, Eli A.
Sutter, Peter W.
description We report an improved photosensitivity in few-layer tin disulfide (SnS{sub 2}) field-effect transistors (FETs) following doping with CdSe/ZnS core/shell quantum dots (QDs). The hybrid QD-SnS{sub 2} FET devices achieve more than 500% increase in the photocurrent response compared with the starting SnS{sub 2}-only FET device and a spectral responsivity reaching over 650 A/W at 400 nm wavelength. The negligible electrical conductance in a control QD-only FET device suggests that the energy transfer between QDs and SnS{sub 2} is the main mechanism responsible for the sensitization effect, which is consistent with the strong spectral overlap between QD photoluminescence and SnS{sub 2} optical absorption as well as the large nominal donor-acceptor interspacing between QD core and SnS{sub 2}. We also find enhanced charge carrier mobility in hybrid QD-SnS{sub 2} FETs which we attribute to a reduced contact Schottky barrier width due to an elevated background charge carrier density.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22591485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22591485</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_225914853</originalsourceid><addsrcrecordid>eNqNy01uwjAQhmGrAqmhcIeRWFuK44afdUXFAdgjY4-VQcEOngkVt28WHIDVp1f6ng9VmXq71daY3UxVdV1bvdm35lMtmK9Tto21lUrH56VQgPvokow3CFm0UIJAPPaRAkIk7IPGGNELSHGJiSUXhj-SDug2lPzAAEOXJfuxFEwCLgXgYQLF9VCQhzypB8lzqebR9Yyr136p9e_h9HPUmYXO7EnQdz6nNNlz07R7871r7Xuvf161TbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid quantum dot-tin disulfide field-effect transistors with improved photocurrent and spectral responsivity</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Huang, Yuan ; Zang, Huidong ; Nam, Chang-Yong ; Chen, Jia-Shiang ; Cotlet, Mircea ; Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794 ; Sutter, Eli A. ; Sutter, Peter W.</creator><creatorcontrib>Huang, Yuan ; Zang, Huidong ; Nam, Chang-Yong ; Chen, Jia-Shiang ; Cotlet, Mircea ; Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794 ; Sutter, Eli A. ; Sutter, Peter W.</creatorcontrib><description>We report an improved photosensitivity in few-layer tin disulfide (SnS{sub 2}) field-effect transistors (FETs) following doping with CdSe/ZnS core/shell quantum dots (QDs). The hybrid QD-SnS{sub 2} FET devices achieve more than 500% increase in the photocurrent response compared with the starting SnS{sub 2}-only FET device and a spectral responsivity reaching over 650 A/W at 400 nm wavelength. The negligible electrical conductance in a control QD-only FET device suggests that the energy transfer between QDs and SnS{sub 2} is the main mechanism responsible for the sensitization effect, which is consistent with the strong spectral overlap between QD photoluminescence and SnS{sub 2} optical absorption as well as the large nominal donor-acceptor interspacing between QD core and SnS{sub 2}. We also find enhanced charge carrier mobility in hybrid QD-SnS{sub 2} FETs which we attribute to a reduced contact Schottky barrier width due to an elevated background charge carrier density.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><language>eng</language><publisher>United States</publisher><subject>CADMIUM SELENIDES ; CARRIER DENSITY ; CARRIER MOBILITY ; CHARGE CARRIERS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DISULFIDES ; FIELD EFFECT TRANSISTORS ; PHOTOCURRENTS ; PHOTOLUMINESCENCE ; PHOTOSENSITIVITY ; QUANTUM DOTS ; TIN SULFIDES ; WAVELENGTHS ; ZINC SULFIDES</subject><ispartof>Applied physics letters, 2016-03, Vol.108 (12)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22591485$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Yuan</creatorcontrib><creatorcontrib>Zang, Huidong</creatorcontrib><creatorcontrib>Nam, Chang-Yong</creatorcontrib><creatorcontrib>Chen, Jia-Shiang</creatorcontrib><creatorcontrib>Cotlet, Mircea</creatorcontrib><creatorcontrib>Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794</creatorcontrib><creatorcontrib>Sutter, Eli A.</creatorcontrib><creatorcontrib>Sutter, Peter W.</creatorcontrib><title>Hybrid quantum dot-tin disulfide field-effect transistors with improved photocurrent and spectral responsivity</title><title>Applied physics letters</title><description>We report an improved photosensitivity in few-layer tin disulfide (SnS{sub 2}) field-effect transistors (FETs) following doping with CdSe/ZnS core/shell quantum dots (QDs). The hybrid QD-SnS{sub 2} FET devices achieve more than 500% increase in the photocurrent response compared with the starting SnS{sub 2}-only FET device and a spectral responsivity reaching over 650 A/W at 400 nm wavelength. The negligible electrical conductance in a control QD-only FET device suggests that the energy transfer between QDs and SnS{sub 2} is the main mechanism responsible for the sensitization effect, which is consistent with the strong spectral overlap between QD photoluminescence and SnS{sub 2} optical absorption as well as the large nominal donor-acceptor interspacing between QD core and SnS{sub 2}. We also find enhanced charge carrier mobility in hybrid QD-SnS{sub 2} FETs which we attribute to a reduced contact Schottky barrier width due to an elevated background charge carrier density.</description><subject>CADMIUM SELENIDES</subject><subject>CARRIER DENSITY</subject><subject>CARRIER MOBILITY</subject><subject>CHARGE CARRIERS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DISULFIDES</subject><subject>FIELD EFFECT TRANSISTORS</subject><subject>PHOTOCURRENTS</subject><subject>PHOTOLUMINESCENCE</subject><subject>PHOTOSENSITIVITY</subject><subject>QUANTUM DOTS</subject><subject>TIN SULFIDES</subject><subject>WAVELENGTHS</subject><subject>ZINC SULFIDES</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNy01uwjAQhmGrAqmhcIeRWFuK44afdUXFAdgjY4-VQcEOngkVt28WHIDVp1f6ng9VmXq71daY3UxVdV1bvdm35lMtmK9Tto21lUrH56VQgPvokow3CFm0UIJAPPaRAkIk7IPGGNELSHGJiSUXhj-SDug2lPzAAEOXJfuxFEwCLgXgYQLF9VCQhzypB8lzqebR9Yyr136p9e_h9HPUmYXO7EnQdz6nNNlz07R7871r7Xuvf161TbA</recordid><startdate>20160321</startdate><enddate>20160321</enddate><creator>Huang, Yuan</creator><creator>Zang, Huidong</creator><creator>Nam, Chang-Yong</creator><creator>Chen, Jia-Shiang</creator><creator>Cotlet, Mircea</creator><creator>Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794</creator><creator>Sutter, Eli A.</creator><creator>Sutter, Peter W.</creator><scope>OTOTI</scope></search><sort><creationdate>20160321</creationdate><title>Hybrid quantum dot-tin disulfide field-effect transistors with improved photocurrent and spectral responsivity</title><author>Huang, Yuan ; Zang, Huidong ; Nam, Chang-Yong ; Chen, Jia-Shiang ; Cotlet, Mircea ; Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794 ; Sutter, Eli A. ; Sutter, Peter W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_225914853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CADMIUM SELENIDES</topic><topic>CARRIER DENSITY</topic><topic>CARRIER MOBILITY</topic><topic>CHARGE CARRIERS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DISULFIDES</topic><topic>FIELD EFFECT TRANSISTORS</topic><topic>PHOTOCURRENTS</topic><topic>PHOTOLUMINESCENCE</topic><topic>PHOTOSENSITIVITY</topic><topic>QUANTUM DOTS</topic><topic>TIN SULFIDES</topic><topic>WAVELENGTHS</topic><topic>ZINC SULFIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yuan</creatorcontrib><creatorcontrib>Zang, Huidong</creatorcontrib><creatorcontrib>Nam, Chang-Yong</creatorcontrib><creatorcontrib>Chen, Jia-Shiang</creatorcontrib><creatorcontrib>Cotlet, Mircea</creatorcontrib><creatorcontrib>Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794</creatorcontrib><creatorcontrib>Sutter, Eli A.</creatorcontrib><creatorcontrib>Sutter, Peter W.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yuan</au><au>Zang, Huidong</au><au>Nam, Chang-Yong</au><au>Chen, Jia-Shiang</au><au>Cotlet, Mircea</au><au>Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794</au><au>Sutter, Eli A.</au><au>Sutter, Peter W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid quantum dot-tin disulfide field-effect transistors with improved photocurrent and spectral responsivity</atitle><jtitle>Applied physics letters</jtitle><date>2016-03-21</date><risdate>2016</risdate><volume>108</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We report an improved photosensitivity in few-layer tin disulfide (SnS{sub 2}) field-effect transistors (FETs) following doping with CdSe/ZnS core/shell quantum dots (QDs). The hybrid QD-SnS{sub 2} FET devices achieve more than 500% increase in the photocurrent response compared with the starting SnS{sub 2}-only FET device and a spectral responsivity reaching over 650 A/W at 400 nm wavelength. The negligible electrical conductance in a control QD-only FET device suggests that the energy transfer between QDs and SnS{sub 2} is the main mechanism responsible for the sensitization effect, which is consistent with the strong spectral overlap between QD photoluminescence and SnS{sub 2} optical absorption as well as the large nominal donor-acceptor interspacing between QD core and SnS{sub 2}. We also find enhanced charge carrier mobility in hybrid QD-SnS{sub 2} FETs which we attribute to a reduced contact Schottky barrier width due to an elevated background charge carrier density.</abstract><cop>United States</cop></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2016-03, Vol.108 (12)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22591485
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects CADMIUM SELENIDES
CARRIER DENSITY
CARRIER MOBILITY
CHARGE CARRIERS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
DISULFIDES
FIELD EFFECT TRANSISTORS
PHOTOCURRENTS
PHOTOLUMINESCENCE
PHOTOSENSITIVITY
QUANTUM DOTS
TIN SULFIDES
WAVELENGTHS
ZINC SULFIDES
title Hybrid quantum dot-tin disulfide field-effect transistors with improved photocurrent and spectral responsivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20quantum%20dot-tin%20disulfide%20field-effect%20transistors%20with%20improved%20photocurrent%20and%20spectral%20responsivity&rft.jtitle=Applied%20physics%20letters&rft.au=Huang,%20Yuan&rft.date=2016-03-21&rft.volume=108&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/&rft_dat=%3Costi%3E22591485%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_225914853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true