Loading…
Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance
We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavitie...
Saved in:
Published in: | Journal of applied physics 2016-04, Vol.119 (15) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253 |
container_end_page | |
container_issue | 15 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 119 |
creator | Le Floch, J.-M. Delhote, N. Aubourg, M. Madrangeas, V. Cros, D. Castelletto, S. Tobar, M. E. |
description | We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles. |
doi_str_mv | 10.1063/1.4946893 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22594615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121876229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253</originalsourceid><addsrcrecordid>eNqd0MtqAyEUBmApLTS9LPoGA121MKke40SXJfQGgW7SZRF1nI5hMk7VJOTta0igXXf1o3xHOT9CNwSPCa7oAxlPxKTigp6gEcFclFPG8CkaYQyk5GIqztFFjEuMCeFUjNDnwm9VqGOhTOvsxvVfRUzB5zB-PXT7s-uL1AZry9qtbB-d71VXGrVxaVdsXWqL6DtX5zGVbBGHzIONGfXGXqGzRnXRXh_zEn08Py1mr-X8_eVt9jgvDWUslRoDTIEbbgEbVtXA803DK240YEU15aCVqRtMmKBaU1MDZRQEFkbrCTB6iW4P7_qYnIzGJWta4_vemiQBWK6E_FFD8N9rG5Nc-nXI20QJBAifVgAiq7uDMsHHGGwjh-BWKuwkwXLfsSTy2HG29we7_1KlXM3_8MaHXyiHuqE_jwaKfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121876229</pqid></control><display><type>article</type><title>Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Le Floch, J.-M. ; Delhote, N. ; Aubourg, M. ; Madrangeas, V. ; Cros, D. ; Castelletto, S. ; Tobar, M. E.</creator><creatorcontrib>Le Floch, J.-M. ; Delhote, N. ; Aubourg, M. ; Madrangeas, V. ; Cros, D. ; Castelletto, S. ; Tobar, M. E.</creatorcontrib><description>We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4946893</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Cavity resonators ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer architecture ; Coupling ; Design defects ; Design parameters ; DIAMONDS ; Electron spin ; ELECTRONS ; FINITE ELEMENT METHOD ; MAGNETIC FIELDS ; Magnetic resonance ; MICROWAVE RADIATION ; NITROGEN ; ONE-DIMENSIONAL CALCULATIONS ; PARAMAGNETISM ; Photonics ; PHOTONS ; QUANTUM COMPUTERS ; Quantum computing ; QUANTUM INFORMATION ; Quantum phenomena ; READOUT SYSTEMS ; RESONANCE ; Solid state ; SOLIDS ; SPIN ; Spin resonance ; STRONG-COUPLING MODEL ; SUPERCONDUCTING CAVITY RESONATORS ; THREE-DIMENSIONAL CALCULATIONS ; VACANCIES</subject><ispartof>Journal of applied physics, 2016-04, Vol.119 (15)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253</citedby><cites>FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253</cites><orcidid>0000-0003-1537-5561 ; 0000-0002-8280-4293 ; 0000-0002-8675-2291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22594615$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Floch, J.-M.</creatorcontrib><creatorcontrib>Delhote, N.</creatorcontrib><creatorcontrib>Aubourg, M.</creatorcontrib><creatorcontrib>Madrangeas, V.</creatorcontrib><creatorcontrib>Cros, D.</creatorcontrib><creatorcontrib>Castelletto, S.</creatorcontrib><creatorcontrib>Tobar, M. E.</creatorcontrib><title>Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance</title><title>Journal of applied physics</title><description>We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.</description><subject>Applied physics</subject><subject>Cavity resonators</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer architecture</subject><subject>Coupling</subject><subject>Design defects</subject><subject>Design parameters</subject><subject>DIAMONDS</subject><subject>Electron spin</subject><subject>ELECTRONS</subject><subject>FINITE ELEMENT METHOD</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic resonance</subject><subject>MICROWAVE RADIATION</subject><subject>NITROGEN</subject><subject>ONE-DIMENSIONAL CALCULATIONS</subject><subject>PARAMAGNETISM</subject><subject>Photonics</subject><subject>PHOTONS</subject><subject>QUANTUM COMPUTERS</subject><subject>Quantum computing</subject><subject>QUANTUM INFORMATION</subject><subject>Quantum phenomena</subject><subject>READOUT SYSTEMS</subject><subject>RESONANCE</subject><subject>Solid state</subject><subject>SOLIDS</subject><subject>SPIN</subject><subject>Spin resonance</subject><subject>STRONG-COUPLING MODEL</subject><subject>SUPERCONDUCTING CAVITY RESONATORS</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><subject>VACANCIES</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0MtqAyEUBmApLTS9LPoGA121MKke40SXJfQGgW7SZRF1nI5hMk7VJOTta0igXXf1o3xHOT9CNwSPCa7oAxlPxKTigp6gEcFclFPG8CkaYQyk5GIqztFFjEuMCeFUjNDnwm9VqGOhTOvsxvVfRUzB5zB-PXT7s-uL1AZry9qtbB-d71VXGrVxaVdsXWqL6DtX5zGVbBGHzIONGfXGXqGzRnXRXh_zEn08Py1mr-X8_eVt9jgvDWUslRoDTIEbbgEbVtXA803DK240YEU15aCVqRtMmKBaU1MDZRQEFkbrCTB6iW4P7_qYnIzGJWta4_vemiQBWK6E_FFD8N9rG5Nc-nXI20QJBAifVgAiq7uDMsHHGGwjh-BWKuwkwXLfsSTy2HG29we7_1KlXM3_8MaHXyiHuqE_jwaKfw</recordid><startdate>20160421</startdate><enddate>20160421</enddate><creator>Le Floch, J.-M.</creator><creator>Delhote, N.</creator><creator>Aubourg, M.</creator><creator>Madrangeas, V.</creator><creator>Cros, D.</creator><creator>Castelletto, S.</creator><creator>Tobar, M. E.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1537-5561</orcidid><orcidid>https://orcid.org/0000-0002-8280-4293</orcidid><orcidid>https://orcid.org/0000-0002-8675-2291</orcidid></search><sort><creationdate>20160421</creationdate><title>Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance</title><author>Le Floch, J.-M. ; Delhote, N. ; Aubourg, M. ; Madrangeas, V. ; Cros, D. ; Castelletto, S. ; Tobar, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Cavity resonators</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer architecture</topic><topic>Coupling</topic><topic>Design defects</topic><topic>Design parameters</topic><topic>DIAMONDS</topic><topic>Electron spin</topic><topic>ELECTRONS</topic><topic>FINITE ELEMENT METHOD</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic resonance</topic><topic>MICROWAVE RADIATION</topic><topic>NITROGEN</topic><topic>ONE-DIMENSIONAL CALCULATIONS</topic><topic>PARAMAGNETISM</topic><topic>Photonics</topic><topic>PHOTONS</topic><topic>QUANTUM COMPUTERS</topic><topic>Quantum computing</topic><topic>QUANTUM INFORMATION</topic><topic>Quantum phenomena</topic><topic>READOUT SYSTEMS</topic><topic>RESONANCE</topic><topic>Solid state</topic><topic>SOLIDS</topic><topic>SPIN</topic><topic>Spin resonance</topic><topic>STRONG-COUPLING MODEL</topic><topic>SUPERCONDUCTING CAVITY RESONATORS</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><topic>VACANCIES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Floch, J.-M.</creatorcontrib><creatorcontrib>Delhote, N.</creatorcontrib><creatorcontrib>Aubourg, M.</creatorcontrib><creatorcontrib>Madrangeas, V.</creatorcontrib><creatorcontrib>Cros, D.</creatorcontrib><creatorcontrib>Castelletto, S.</creatorcontrib><creatorcontrib>Tobar, M. E.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Floch, J.-M.</au><au>Delhote, N.</au><au>Aubourg, M.</au><au>Madrangeas, V.</au><au>Cros, D.</au><au>Castelletto, S.</au><au>Tobar, M. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance</atitle><jtitle>Journal of applied physics</jtitle><date>2016-04-21</date><risdate>2016</risdate><volume>119</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4946893</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1537-5561</orcidid><orcidid>https://orcid.org/0000-0002-8280-4293</orcidid><orcidid>https://orcid.org/0000-0002-8675-2291</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2016-04, Vol.119 (15) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22594615 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Cavity resonators CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computer architecture Coupling Design defects Design parameters DIAMONDS Electron spin ELECTRONS FINITE ELEMENT METHOD MAGNETIC FIELDS Magnetic resonance MICROWAVE RADIATION NITROGEN ONE-DIMENSIONAL CALCULATIONS PARAMAGNETISM Photonics PHOTONS QUANTUM COMPUTERS Quantum computing QUANTUM INFORMATION Quantum phenomena READOUT SYSTEMS RESONANCE Solid state SOLIDS SPIN Spin resonance STRONG-COUPLING MODEL SUPERCONDUCTING CAVITY RESONATORS THREE-DIMENSIONAL CALCULATIONS VACANCIES |
title | Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20achieving%20strong%20coupling%20in%20three-dimensional-cavity%20with%20solid%20state%20spin%20resonance&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Le%20Floch,%20J.-M.&rft.date=2016-04-21&rft.volume=119&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4946893&rft_dat=%3Cproquest_osti_%3E2121876229%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121876229&rft_id=info:pmid/&rfr_iscdi=true |