Loading…

Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance

We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavitie...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2016-04, Vol.119 (15)
Main Authors: Le Floch, J.-M., Delhote, N., Aubourg, M., Madrangeas, V., Cros, D., Castelletto, S., Tobar, M. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253
cites cdi_FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253
container_end_page
container_issue 15
container_start_page
container_title Journal of applied physics
container_volume 119
creator Le Floch, J.-M.
Delhote, N.
Aubourg, M.
Madrangeas, V.
Cros, D.
Castelletto, S.
Tobar, M. E.
description We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.
doi_str_mv 10.1063/1.4946893
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22594615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121876229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253</originalsourceid><addsrcrecordid>eNqd0MtqAyEUBmApLTS9LPoGA121MKke40SXJfQGgW7SZRF1nI5hMk7VJOTta0igXXf1o3xHOT9CNwSPCa7oAxlPxKTigp6gEcFclFPG8CkaYQyk5GIqztFFjEuMCeFUjNDnwm9VqGOhTOvsxvVfRUzB5zB-PXT7s-uL1AZry9qtbB-d71VXGrVxaVdsXWqL6DtX5zGVbBGHzIONGfXGXqGzRnXRXh_zEn08Py1mr-X8_eVt9jgvDWUslRoDTIEbbgEbVtXA803DK240YEU15aCVqRtMmKBaU1MDZRQEFkbrCTB6iW4P7_qYnIzGJWta4_vemiQBWK6E_FFD8N9rG5Nc-nXI20QJBAifVgAiq7uDMsHHGGwjh-BWKuwkwXLfsSTy2HG29we7_1KlXM3_8MaHXyiHuqE_jwaKfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121876229</pqid></control><display><type>article</type><title>Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Le Floch, J.-M. ; Delhote, N. ; Aubourg, M. ; Madrangeas, V. ; Cros, D. ; Castelletto, S. ; Tobar, M. E.</creator><creatorcontrib>Le Floch, J.-M. ; Delhote, N. ; Aubourg, M. ; Madrangeas, V. ; Cros, D. ; Castelletto, S. ; Tobar, M. E.</creatorcontrib><description>We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4946893</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Cavity resonators ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer architecture ; Coupling ; Design defects ; Design parameters ; DIAMONDS ; Electron spin ; ELECTRONS ; FINITE ELEMENT METHOD ; MAGNETIC FIELDS ; Magnetic resonance ; MICROWAVE RADIATION ; NITROGEN ; ONE-DIMENSIONAL CALCULATIONS ; PARAMAGNETISM ; Photonics ; PHOTONS ; QUANTUM COMPUTERS ; Quantum computing ; QUANTUM INFORMATION ; Quantum phenomena ; READOUT SYSTEMS ; RESONANCE ; Solid state ; SOLIDS ; SPIN ; Spin resonance ; STRONG-COUPLING MODEL ; SUPERCONDUCTING CAVITY RESONATORS ; THREE-DIMENSIONAL CALCULATIONS ; VACANCIES</subject><ispartof>Journal of applied physics, 2016-04, Vol.119 (15)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253</citedby><cites>FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253</cites><orcidid>0000-0003-1537-5561 ; 0000-0002-8280-4293 ; 0000-0002-8675-2291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22594615$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Floch, J.-M.</creatorcontrib><creatorcontrib>Delhote, N.</creatorcontrib><creatorcontrib>Aubourg, M.</creatorcontrib><creatorcontrib>Madrangeas, V.</creatorcontrib><creatorcontrib>Cros, D.</creatorcontrib><creatorcontrib>Castelletto, S.</creatorcontrib><creatorcontrib>Tobar, M. E.</creatorcontrib><title>Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance</title><title>Journal of applied physics</title><description>We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.</description><subject>Applied physics</subject><subject>Cavity resonators</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer architecture</subject><subject>Coupling</subject><subject>Design defects</subject><subject>Design parameters</subject><subject>DIAMONDS</subject><subject>Electron spin</subject><subject>ELECTRONS</subject><subject>FINITE ELEMENT METHOD</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic resonance</subject><subject>MICROWAVE RADIATION</subject><subject>NITROGEN</subject><subject>ONE-DIMENSIONAL CALCULATIONS</subject><subject>PARAMAGNETISM</subject><subject>Photonics</subject><subject>PHOTONS</subject><subject>QUANTUM COMPUTERS</subject><subject>Quantum computing</subject><subject>QUANTUM INFORMATION</subject><subject>Quantum phenomena</subject><subject>READOUT SYSTEMS</subject><subject>RESONANCE</subject><subject>Solid state</subject><subject>SOLIDS</subject><subject>SPIN</subject><subject>Spin resonance</subject><subject>STRONG-COUPLING MODEL</subject><subject>SUPERCONDUCTING CAVITY RESONATORS</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><subject>VACANCIES</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0MtqAyEUBmApLTS9LPoGA121MKke40SXJfQGgW7SZRF1nI5hMk7VJOTta0igXXf1o3xHOT9CNwSPCa7oAxlPxKTigp6gEcFclFPG8CkaYQyk5GIqztFFjEuMCeFUjNDnwm9VqGOhTOvsxvVfRUzB5zB-PXT7s-uL1AZry9qtbB-d71VXGrVxaVdsXWqL6DtX5zGVbBGHzIONGfXGXqGzRnXRXh_zEn08Py1mr-X8_eVt9jgvDWUslRoDTIEbbgEbVtXA803DK240YEU15aCVqRtMmKBaU1MDZRQEFkbrCTB6iW4P7_qYnIzGJWta4_vemiQBWK6E_FFD8N9rG5Nc-nXI20QJBAifVgAiq7uDMsHHGGwjh-BWKuwkwXLfsSTy2HG29we7_1KlXM3_8MaHXyiHuqE_jwaKfw</recordid><startdate>20160421</startdate><enddate>20160421</enddate><creator>Le Floch, J.-M.</creator><creator>Delhote, N.</creator><creator>Aubourg, M.</creator><creator>Madrangeas, V.</creator><creator>Cros, D.</creator><creator>Castelletto, S.</creator><creator>Tobar, M. E.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1537-5561</orcidid><orcidid>https://orcid.org/0000-0002-8280-4293</orcidid><orcidid>https://orcid.org/0000-0002-8675-2291</orcidid></search><sort><creationdate>20160421</creationdate><title>Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance</title><author>Le Floch, J.-M. ; Delhote, N. ; Aubourg, M. ; Madrangeas, V. ; Cros, D. ; Castelletto, S. ; Tobar, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Cavity resonators</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer architecture</topic><topic>Coupling</topic><topic>Design defects</topic><topic>Design parameters</topic><topic>DIAMONDS</topic><topic>Electron spin</topic><topic>ELECTRONS</topic><topic>FINITE ELEMENT METHOD</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic resonance</topic><topic>MICROWAVE RADIATION</topic><topic>NITROGEN</topic><topic>ONE-DIMENSIONAL CALCULATIONS</topic><topic>PARAMAGNETISM</topic><topic>Photonics</topic><topic>PHOTONS</topic><topic>QUANTUM COMPUTERS</topic><topic>Quantum computing</topic><topic>QUANTUM INFORMATION</topic><topic>Quantum phenomena</topic><topic>READOUT SYSTEMS</topic><topic>RESONANCE</topic><topic>Solid state</topic><topic>SOLIDS</topic><topic>SPIN</topic><topic>Spin resonance</topic><topic>STRONG-COUPLING MODEL</topic><topic>SUPERCONDUCTING CAVITY RESONATORS</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><topic>VACANCIES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Floch, J.-M.</creatorcontrib><creatorcontrib>Delhote, N.</creatorcontrib><creatorcontrib>Aubourg, M.</creatorcontrib><creatorcontrib>Madrangeas, V.</creatorcontrib><creatorcontrib>Cros, D.</creatorcontrib><creatorcontrib>Castelletto, S.</creatorcontrib><creatorcontrib>Tobar, M. E.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Floch, J.-M.</au><au>Delhote, N.</au><au>Aubourg, M.</au><au>Madrangeas, V.</au><au>Cros, D.</au><au>Castelletto, S.</au><au>Tobar, M. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance</atitle><jtitle>Journal of applied physics</jtitle><date>2016-04-21</date><risdate>2016</risdate><volume>119</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4946893</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1537-5561</orcidid><orcidid>https://orcid.org/0000-0002-8280-4293</orcidid><orcidid>https://orcid.org/0000-0002-8675-2291</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2016-04, Vol.119 (15)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22594615
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Cavity resonators
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computer architecture
Coupling
Design defects
Design parameters
DIAMONDS
Electron spin
ELECTRONS
FINITE ELEMENT METHOD
MAGNETIC FIELDS
Magnetic resonance
MICROWAVE RADIATION
NITROGEN
ONE-DIMENSIONAL CALCULATIONS
PARAMAGNETISM
Photonics
PHOTONS
QUANTUM COMPUTERS
Quantum computing
QUANTUM INFORMATION
Quantum phenomena
READOUT SYSTEMS
RESONANCE
Solid state
SOLIDS
SPIN
Spin resonance
STRONG-COUPLING MODEL
SUPERCONDUCTING CAVITY RESONATORS
THREE-DIMENSIONAL CALCULATIONS
VACANCIES
title Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20achieving%20strong%20coupling%20in%20three-dimensional-cavity%20with%20solid%20state%20spin%20resonance&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Le%20Floch,%20J.-M.&rft.date=2016-04-21&rft.volume=119&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4946893&rft_dat=%3Cproquest_osti_%3E2121876229%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-b022728c8e20c56d28b02f868cb20a3b382bacdf01593bb3cd23532909cbb4253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121876229&rft_id=info:pmid/&rfr_iscdi=true