Loading…

Guiding centre motion for particles in a ponderomotive magnetostatic end plug

The Hamiltonian dynamics of a single particle in a rotating plasma column, interacting with an magnetic multipole is perturbatively solved for up to second order, using the method of Lie transformations. First, the exact Hamiltonian is expressed in terms of canonical action-angle variables, and then...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plasma physics 2023-12, Vol.89 (6), Article 905890615
Main Authors: Rubin, T., Rax, J.M., Fisch, N.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c373t-7ef7482948020052c312122e4939cec45fa833d4e2cd345bcd37e1d71edabeb73
container_end_page
container_issue 6
container_start_page
container_title Journal of plasma physics
container_volume 89
creator Rubin, T.
Rax, J.M.
Fisch, N.J.
description The Hamiltonian dynamics of a single particle in a rotating plasma column, interacting with an magnetic multipole is perturbatively solved for up to second order, using the method of Lie transformations. First, the exact Hamiltonian is expressed in terms of canonical action-angle variables, and then an approximate integrable Hamiltonian is introduced, using another set of actions and angles, which describe the centre of oscillation for the particle. The perturbation introduces an effective ponderomotive potential, which to leading order is positive. At the second order, the pseudopotential consists of a sum of terms of the Miller form, and can have either sign. Additionally, at second order, the ponderomotive interaction introduces a modification to the particle effective mass, when considering the motion along the column axis. It is found that particles can be axially confined by the ponderomotive potentials, but acquire radial excursions which scale as the confining potential. The radial excursions of the particle along its trajectory are investigated, and a condition for the minimal rotation frequency for which the particle remains radially confined is derived. Last, we comment on the changes to the aforementioned solution to the pseudopotentials and particle trajectory in the case of resonant motion, that is, a motion which has the same periodicity as the perturbation.
doi_str_mv 10.1017/S0022377823001307
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2263511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377823001307</cupid><sourcerecordid>2906735506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-7ef7482948020052c312122e4939cec45fa833d4e2cd345bcd37e1d71edabeb73</originalsourceid><addsrcrecordid>eNp1kEFLxDAUhIMouK7-AG9Bz9WXpG3aoyy6Cise1HNI09eaZTepSSr47-2yCx7Ey3uH-WYYhpBLBjcMmLx9BeBcSFlxAcAEyCMyY3lZZ7ICeUxmOznb6afkLMY1AAjgckael6NtreupQZcC0q1P1jva-UAHHZI1G4zUOqrp4F2Lwe-Ar4nTvcPkY9ITQ9G1dNiM_Tk56fQm4sXhz8n7w_3b4jFbvSyfFnerzAgpUiaxk3nF67wCDlBwIxhnnGNei9qgyYtOV0K0OXLTirxopiuRtZJhqxtspJiTq33uVMCqaGxC82G8c2iS4rwUBWMTdL2HhuA_R4xJrf0Y3NRL8RpKKYoCyolie8oEH2PATg3BbnX4VgzUblr1Z9rJIw4evW2CbXv8jf7f9QMZwHoO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906735506</pqid></control><display><type>article</type><title>Guiding centre motion for particles in a ponderomotive magnetostatic end plug</title><source>Cambridge Journals Online</source><creator>Rubin, T. ; Rax, J.M. ; Fisch, N.J.</creator><creatorcontrib>Rubin, T. ; Rax, J.M. ; Fisch, N.J.</creatorcontrib><description>The Hamiltonian dynamics of a single particle in a rotating plasma column, interacting with an magnetic multipole is perturbatively solved for up to second order, using the method of Lie transformations. First, the exact Hamiltonian is expressed in terms of canonical action-angle variables, and then an approximate integrable Hamiltonian is introduced, using another set of actions and angles, which describe the centre of oscillation for the particle. The perturbation introduces an effective ponderomotive potential, which to leading order is positive. At the second order, the pseudopotential consists of a sum of terms of the Miller form, and can have either sign. Additionally, at second order, the ponderomotive interaction introduces a modification to the particle effective mass, when considering the motion along the column axis. It is found that particles can be axially confined by the ponderomotive potentials, but acquire radial excursions which scale as the confining potential. The radial excursions of the particle along its trajectory are investigated, and a condition for the minimal rotation frequency for which the particle remains radially confined is derived. Last, we comment on the changes to the aforementioned solution to the pseudopotentials and particle trajectory in the case of resonant motion, that is, a motion which has the same periodicity as the perturbation.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377823001307</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Charged particles ; Electric fields ; Magnetic fields ; Multipoles ; Particle trajectories ; Perturbation ; Plasma ; Pseudopotentials ; Rotating plasmas</subject><ispartof>Journal of plasma physics, 2023-12, Vol.89 (6), Article 905890615</ispartof><rights>Copyright © The Trustees of Princeton University, 2023. Published by Cambridge University Press</rights><rights>Copyright © The Trustees of Princeton University, 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c373t-7ef7482948020052c312122e4939cec45fa833d4e2cd345bcd37e1d71edabeb73</cites><orcidid>0000-0001-6485-0096 ; 0000-0003-1512-4965 ; 0000-0002-0301-7380 ; 0000000315124965 ; 0000000164850096 ; 0000000203017380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377823001307/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,72960</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2263511$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rubin, T.</creatorcontrib><creatorcontrib>Rax, J.M.</creatorcontrib><creatorcontrib>Fisch, N.J.</creatorcontrib><title>Guiding centre motion for particles in a ponderomotive magnetostatic end plug</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>The Hamiltonian dynamics of a single particle in a rotating plasma column, interacting with an magnetic multipole is perturbatively solved for up to second order, using the method of Lie transformations. First, the exact Hamiltonian is expressed in terms of canonical action-angle variables, and then an approximate integrable Hamiltonian is introduced, using another set of actions and angles, which describe the centre of oscillation for the particle. The perturbation introduces an effective ponderomotive potential, which to leading order is positive. At the second order, the pseudopotential consists of a sum of terms of the Miller form, and can have either sign. Additionally, at second order, the ponderomotive interaction introduces a modification to the particle effective mass, when considering the motion along the column axis. It is found that particles can be axially confined by the ponderomotive potentials, but acquire radial excursions which scale as the confining potential. The radial excursions of the particle along its trajectory are investigated, and a condition for the minimal rotation frequency for which the particle remains radially confined is derived. Last, we comment on the changes to the aforementioned solution to the pseudopotentials and particle trajectory in the case of resonant motion, that is, a motion which has the same periodicity as the perturbation.</description><subject>Charged particles</subject><subject>Electric fields</subject><subject>Magnetic fields</subject><subject>Multipoles</subject><subject>Particle trajectories</subject><subject>Perturbation</subject><subject>Plasma</subject><subject>Pseudopotentials</subject><subject>Rotating plasmas</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAUhIMouK7-AG9Bz9WXpG3aoyy6Cise1HNI09eaZTepSSr47-2yCx7Ey3uH-WYYhpBLBjcMmLx9BeBcSFlxAcAEyCMyY3lZZ7ICeUxmOznb6afkLMY1AAjgckael6NtreupQZcC0q1P1jva-UAHHZI1G4zUOqrp4F2Lwe-Ar4nTvcPkY9ITQ9G1dNiM_Tk56fQm4sXhz8n7w_3b4jFbvSyfFnerzAgpUiaxk3nF67wCDlBwIxhnnGNei9qgyYtOV0K0OXLTirxopiuRtZJhqxtspJiTq33uVMCqaGxC82G8c2iS4rwUBWMTdL2HhuA_R4xJrf0Y3NRL8RpKKYoCyolie8oEH2PATg3BbnX4VgzUblr1Z9rJIw4evW2CbXv8jf7f9QMZwHoO</recordid><startdate>20231228</startdate><enddate>20231228</enddate><creator>Rubin, T.</creator><creator>Rax, J.M.</creator><creator>Fisch, N.J.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6485-0096</orcidid><orcidid>https://orcid.org/0000-0003-1512-4965</orcidid><orcidid>https://orcid.org/0000-0002-0301-7380</orcidid><orcidid>https://orcid.org/0000000315124965</orcidid><orcidid>https://orcid.org/0000000164850096</orcidid><orcidid>https://orcid.org/0000000203017380</orcidid></search><sort><creationdate>20231228</creationdate><title>Guiding centre motion for particles in a ponderomotive magnetostatic end plug</title><author>Rubin, T. ; Rax, J.M. ; Fisch, N.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-7ef7482948020052c312122e4939cec45fa833d4e2cd345bcd37e1d71edabeb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charged particles</topic><topic>Electric fields</topic><topic>Magnetic fields</topic><topic>Multipoles</topic><topic>Particle trajectories</topic><topic>Perturbation</topic><topic>Plasma</topic><topic>Pseudopotentials</topic><topic>Rotating plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubin, T.</creatorcontrib><creatorcontrib>Rax, J.M.</creatorcontrib><creatorcontrib>Fisch, N.J.</creatorcontrib><collection>Cambridge University Press Wholly Gold Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubin, T.</au><au>Rax, J.M.</au><au>Fisch, N.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guiding centre motion for particles in a ponderomotive magnetostatic end plug</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2023-12-28</date><risdate>2023</risdate><volume>89</volume><issue>6</issue><artnum>905890615</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>The Hamiltonian dynamics of a single particle in a rotating plasma column, interacting with an magnetic multipole is perturbatively solved for up to second order, using the method of Lie transformations. First, the exact Hamiltonian is expressed in terms of canonical action-angle variables, and then an approximate integrable Hamiltonian is introduced, using another set of actions and angles, which describe the centre of oscillation for the particle. The perturbation introduces an effective ponderomotive potential, which to leading order is positive. At the second order, the pseudopotential consists of a sum of terms of the Miller form, and can have either sign. Additionally, at second order, the ponderomotive interaction introduces a modification to the particle effective mass, when considering the motion along the column axis. It is found that particles can be axially confined by the ponderomotive potentials, but acquire radial excursions which scale as the confining potential. The radial excursions of the particle along its trajectory are investigated, and a condition for the minimal rotation frequency for which the particle remains radially confined is derived. Last, we comment on the changes to the aforementioned solution to the pseudopotentials and particle trajectory in the case of resonant motion, that is, a motion which has the same periodicity as the perturbation.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377823001307</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6485-0096</orcidid><orcidid>https://orcid.org/0000-0003-1512-4965</orcidid><orcidid>https://orcid.org/0000-0002-0301-7380</orcidid><orcidid>https://orcid.org/0000000315124965</orcidid><orcidid>https://orcid.org/0000000164850096</orcidid><orcidid>https://orcid.org/0000000203017380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2023-12, Vol.89 (6), Article 905890615
issn 0022-3778
1469-7807
language eng
recordid cdi_osti_scitechconnect_2263511
source Cambridge Journals Online
subjects Charged particles
Electric fields
Magnetic fields
Multipoles
Particle trajectories
Perturbation
Plasma
Pseudopotentials
Rotating plasmas
title Guiding centre motion for particles in a ponderomotive magnetostatic end plug
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guiding%20centre%20motion%20for%20particles%20in%20a%20ponderomotive%20magnetostatic%20end%20plug&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Rubin,%20T.&rft.date=2023-12-28&rft.volume=89&rft.issue=6&rft.artnum=905890615&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377823001307&rft_dat=%3Cproquest_osti_%3E2906735506%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-7ef7482948020052c312122e4939cec45fa833d4e2cd345bcd37e1d71edabeb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2906735506&rft_id=info:pmid/&rft_cupid=10_1017_S0022377823001307&rfr_iscdi=true