Loading…
Polarization of the photoluminescence of quantum dots incorporated into quantum wires
The photoluminescence spectra of individual quantum dots incorporated into a quantum wire are studied. From the behavior of the spectra in a magnetic field, it is possible to estimate the exciton binding energy in a quantum dot incorporated into a quantum wire. It is found that the exciton photolumi...
Saved in:
Published in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2016-12, Vol.50 (12), p.1647-1650 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The photoluminescence spectra of individual quantum dots incorporated into a quantum wire are studied. From the behavior of the spectra in a magnetic field, it is possible to estimate the exciton binding energy in a quantum dot incorporated into a quantum wire. It is found that the exciton photoluminescence signal emitted from a quantum dot along the direction of the nanowire axis is linearly polarized. At the same time, the photoluminescence signal propagating in the direction orthogonal to the nanowire axis is practically unpolarized. The experimentally observed effect is attributed to the nonaxial arrangement of the dot in the wire under conditions of a huge increase in the exciton binding energy due to the effect of the image potential on the exciton. |
---|---|
ISSN: | 1063-7826 1090-6479 |
DOI: | 10.1134/S1063782616120150 |