Loading…

Accessing alkali-free NASICON-type compounds through mixed oxoanion sol–gel chemistry: Hydrogen titanium phosphate sulfate, H{sub 1−x}Ti{sub 2}(PO{sub 4}){sub 3−x}(SO{sub 4}){sub x} (x=0.5–1)

We report a direct sol–gel synthesis and characterization of new proton-containing, rhombohedral NASICION-type titanium compounds with mixed phosphate and sulfate oxoanions. The synthetic conditions were established by utilizing peroxide ion as a decomposable and stabilizing ligand for titanyl ions...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solid state chemistry 2016-10, Vol.242 (Part 2)
Main Authors: Mieritz, Daniel, Davidowski, Stephen K., Seo, Dong-Kyun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a direct sol–gel synthesis and characterization of new proton-containing, rhombohedral NASICION-type titanium compounds with mixed phosphate and sulfate oxoanions. The synthetic conditions were established by utilizing peroxide ion as a decomposable and stabilizing ligand for titanyl ions in the presence of phosphates in a strong acidic medium. Thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), induction-coupled plasma optical emission spectroscopic (ICP-OES) elemental analysis, and Raman and {sup 1}H magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopic studies have determined the presence of sulfate and proton ions in the structure, for which the compositional range has been found to be H{sub 1−x}Ti{sub 2}(PO{sub 4}){sub 3−x}(SO{sub 4}){sub x} (x=0.5–1). The particulate products exhibit a nanocrystalline nature observed through characterization with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The N{sub 2} sorption isotherm measurements and subsequent Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) analyses confirmed the presence of the textural meso- and macropores in the materials. Future studies would determine the potential of the new compounds in various applications as battery materials, proton conductors and solid acid catalysts. - Graphical abstract: A series of proton-containing NASICON-type compounds, H{sub 1−x}Ti{sub 2}(PO{sub 4}){sub 3−x}(SO{sub 4}){sub x} (x=0.5–1), were discovered through a new sol–gel synthetic method that utilizes peroxide ion as a decomposable and stabilizing ligand for titanyl ions in the presence of phosphates in a strong acidic medium.
ISSN:0022-4596
1095-726X
DOI:10.1016/J.JSSC.2016.02.007