Loading…
Getting super-excited with modified dispersion relations
We demonstrate that in some regions of parameter space, modified dispersion relations can lead to highly populated excited states, which we dub as 'super-excited' states. In order to prepare such super-excited states, we invoke dispersion relations that have negative slope in an interim su...
Saved in:
Published in: | Journal of cosmology and astroparticle physics 2017-09, Vol.2017 (9), p.8-8 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate that in some regions of parameter space, modified dispersion relations can lead to highly populated excited states, which we dub as 'super-excited' states. In order to prepare such super-excited states, we invoke dispersion relations that have negative slope in an interim sub-horizon phase at high momenta. This behaviour of quantum fluctuations can lead to large corrections relative to the Bunch-Davies power spectrum, which mimics highly excited initial conditions. We identify the Bogolyubov coefficients that can yield these power spectra. In the course of this computation, we also point out the shortcomings of the gluing method for evaluating the power spectrum and the Bogolyubov coefficients. As we discuss, there are other regions of parameter space, where the power spectrum does not get modified. Therefore, modified dispersion relations can also lead to so-called 'calm excited states'. We conclude by commenting on the possibility of obtaining these modified dispersion relations within the Effective Field Theory of Inflation. |
---|---|
ISSN: | 1475-7516 1475-7516 |
DOI: | 10.1088/1475-7516/2017/09/008 |