Loading…

Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress

The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here,...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2016-11, Vol.480 (2), p.166-172
Main Authors: Kanemoto, Soshi, Nitani, Ryota, Murakami, Tatsuhiko, Kaneko, Masayuki, Asada, Rie, Matsuhisa, Koji, Saito, Atsushi, Imaizumi, Kazunori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c520t-c57f630e5678891d90e50cbb8713c1cfaa2f335d733337ffb9b0e3949e887e5f3
cites cdi_FETCH-LOGICAL-c520t-c57f630e5678891d90e50cbb8713c1cfaa2f335d733337ffb9b0e3949e887e5f3
container_end_page 172
container_issue 2
container_start_page 166
container_title Biochemical and biophysical research communications
container_volume 480
creator Kanemoto, Soshi
Nitani, Ryota
Murakami, Tatsuhiko
Kaneko, Masayuki
Asada, Rie
Matsuhisa, Koji
Saito, Atsushi
Imaizumi, Kazunori
description The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here, we demonstrate a novel aspect of the UPR by electron microscopy and immunostaining analyses, whereby multivesicular body (MVB) formation was enhanced after ER stress. This MVB formation was influenced by inhibition of ER stress transducers inositol required enzyme 1 (IRE1) and PKR-like ER kinase (PERK). Furthermore, exosome release was also increased during ER stress. However, in IRE1 or PERK deficient cells, exosome release was not upregulated, indicating that IRE1- and PERK-mediated pathways are involved in ER stress-dependent exosome release. •Endoplasmic reticulum (ER) stress induces multivesicular body (MVB) formation.•ER stress transducers IRE1 and PERK mediate MVB formation.•Exosome release is enhanced after ER stress.•IRE1 or PERK deficiency blocks upregulation of ER stress-dependent exosome release.
doi_str_mv 10.1016/j.bbrc.2016.10.019
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22696685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X16316837</els_id><sourcerecordid>1835388406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-c57f630e5678891d90e50cbb8713c1cfaa2f335d733337ffb9b0e3949e887e5f3</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhkNpqbe2f8BFGejGzb3Nx518gJsi2hYsbhTchUxyornMJLdJRvTfm-Fql80iOZw85-XwvgidELwhmPDvu80wZLuhrW6NDSbqHVoRrPCaErx9j1YYY76mitwdoU-l7DAmZMvVR3REhaA96cUKmT_zWMMjlGDn0eRuSO658ylPpoYUO4gPJlqYINbORNfBUyppgi7DCKZA5-Yc4n3DXNqPpkzBtq-6aM1TV2qGUj6jD96MBb68vsfo9vLi5vzX-ur65-_zH1dr21Nc2y08Zxh6LqRUxKlWYjsMUhBmifXGUM9Y7wRrR3g_qAEDU1sFUgroPTtG3w66qdSgiw0V7INNMYKtmlKuOJd9o04P1D6nvzOUqqdQLIyjiZDmoolkPZNyi3lD6QG1OZWSwet9DpPJz5pgvQSgd3oJQC8BLL0WQBv6-qo_DxO4fyNvjjfg7ABA8-IxQF5WheaxC3nZ1KXwP_0XsgaYRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835388406</pqid></control><display><type>article</type><title>Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress</title><source>ScienceDirect Freedom Collection</source><creator>Kanemoto, Soshi ; Nitani, Ryota ; Murakami, Tatsuhiko ; Kaneko, Masayuki ; Asada, Rie ; Matsuhisa, Koji ; Saito, Atsushi ; Imaizumi, Kazunori</creator><creatorcontrib>Kanemoto, Soshi ; Nitani, Ryota ; Murakami, Tatsuhiko ; Kaneko, Masayuki ; Asada, Rie ; Matsuhisa, Koji ; Saito, Atsushi ; Imaizumi, Kazunori</creatorcontrib><description>The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here, we demonstrate a novel aspect of the UPR by electron microscopy and immunostaining analyses, whereby multivesicular body (MVB) formation was enhanced after ER stress. This MVB formation was influenced by inhibition of ER stress transducers inositol required enzyme 1 (IRE1) and PKR-like ER kinase (PERK). Furthermore, exosome release was also increased during ER stress. However, in IRE1 or PERK deficient cells, exosome release was not upregulated, indicating that IRE1- and PERK-mediated pathways are involved in ER stress-dependent exosome release. •Endoplasmic reticulum (ER) stress induces multivesicular body (MVB) formation.•ER stress transducers IRE1 and PERK mediate MVB formation.•Exosome release is enhanced after ER stress.•IRE1 or PERK deficiency blocks upregulation of ER stress-dependent exosome release.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2016.10.019</identifier><identifier>PMID: 27725157</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; eIF-2 Kinase - metabolism ; ELECTRON MICROSCOPY ; ENDOPLASMIC RETICULUM ; Endoplasmic Reticulum Stress - physiology ; Endoribonucleases - metabolism ; Exosome ; Exosomes - metabolism ; HeLa Cells ; Humans ; IRE1 ; Multivesicular Bodies - physiology ; Multivesicular body ; PERK ; Protein-Serine-Threonine Kinases - metabolism ; Signal Transduction ; STRESSES</subject><ispartof>Biochemical and biophysical research communications, 2016-11, Vol.480 (2), p.166-172</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-c57f630e5678891d90e50cbb8713c1cfaa2f335d733337ffb9b0e3949e887e5f3</citedby><cites>FETCH-LOGICAL-c520t-c57f630e5678891d90e50cbb8713c1cfaa2f335d733337ffb9b0e3949e887e5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27725157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22696685$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanemoto, Soshi</creatorcontrib><creatorcontrib>Nitani, Ryota</creatorcontrib><creatorcontrib>Murakami, Tatsuhiko</creatorcontrib><creatorcontrib>Kaneko, Masayuki</creatorcontrib><creatorcontrib>Asada, Rie</creatorcontrib><creatorcontrib>Matsuhisa, Koji</creatorcontrib><creatorcontrib>Saito, Atsushi</creatorcontrib><creatorcontrib>Imaizumi, Kazunori</creatorcontrib><title>Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here, we demonstrate a novel aspect of the UPR by electron microscopy and immunostaining analyses, whereby multivesicular body (MVB) formation was enhanced after ER stress. This MVB formation was influenced by inhibition of ER stress transducers inositol required enzyme 1 (IRE1) and PKR-like ER kinase (PERK). Furthermore, exosome release was also increased during ER stress. However, in IRE1 or PERK deficient cells, exosome release was not upregulated, indicating that IRE1- and PERK-mediated pathways are involved in ER stress-dependent exosome release. •Endoplasmic reticulum (ER) stress induces multivesicular body (MVB) formation.•ER stress transducers IRE1 and PERK mediate MVB formation.•Exosome release is enhanced after ER stress.•IRE1 or PERK deficiency blocks upregulation of ER stress-dependent exosome release.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>eIF-2 Kinase - metabolism</subject><subject>ELECTRON MICROSCOPY</subject><subject>ENDOPLASMIC RETICULUM</subject><subject>Endoplasmic Reticulum Stress - physiology</subject><subject>Endoribonucleases - metabolism</subject><subject>Exosome</subject><subject>Exosomes - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>IRE1</subject><subject>Multivesicular Bodies - physiology</subject><subject>Multivesicular body</subject><subject>PERK</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Signal Transduction</subject><subject>STRESSES</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LHTEUhkNpqbe2f8BFGejGzb3Nx518gJsi2hYsbhTchUxyornMJLdJRvTfm-Fql80iOZw85-XwvgidELwhmPDvu80wZLuhrW6NDSbqHVoRrPCaErx9j1YYY76mitwdoU-l7DAmZMvVR3REhaA96cUKmT_zWMMjlGDn0eRuSO658ylPpoYUO4gPJlqYINbORNfBUyppgi7DCKZA5-Yc4n3DXNqPpkzBtq-6aM1TV2qGUj6jD96MBb68vsfo9vLi5vzX-ur65-_zH1dr21Nc2y08Zxh6LqRUxKlWYjsMUhBmifXGUM9Y7wRrR3g_qAEDU1sFUgroPTtG3w66qdSgiw0V7INNMYKtmlKuOJd9o04P1D6nvzOUqqdQLIyjiZDmoolkPZNyi3lD6QG1OZWSwet9DpPJz5pgvQSgd3oJQC8BLL0WQBv6-qo_DxO4fyNvjjfg7ABA8-IxQF5WheaxC3nZ1KXwP_0XsgaYRg</recordid><startdate>20161111</startdate><enddate>20161111</enddate><creator>Kanemoto, Soshi</creator><creator>Nitani, Ryota</creator><creator>Murakami, Tatsuhiko</creator><creator>Kaneko, Masayuki</creator><creator>Asada, Rie</creator><creator>Matsuhisa, Koji</creator><creator>Saito, Atsushi</creator><creator>Imaizumi, Kazunori</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20161111</creationdate><title>Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress</title><author>Kanemoto, Soshi ; Nitani, Ryota ; Murakami, Tatsuhiko ; Kaneko, Masayuki ; Asada, Rie ; Matsuhisa, Koji ; Saito, Atsushi ; Imaizumi, Kazunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-c57f630e5678891d90e50cbb8713c1cfaa2f335d733337ffb9b0e3949e887e5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>eIF-2 Kinase - metabolism</topic><topic>ELECTRON MICROSCOPY</topic><topic>ENDOPLASMIC RETICULUM</topic><topic>Endoplasmic Reticulum Stress - physiology</topic><topic>Endoribonucleases - metabolism</topic><topic>Exosome</topic><topic>Exosomes - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>IRE1</topic><topic>Multivesicular Bodies - physiology</topic><topic>Multivesicular body</topic><topic>PERK</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Signal Transduction</topic><topic>STRESSES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanemoto, Soshi</creatorcontrib><creatorcontrib>Nitani, Ryota</creatorcontrib><creatorcontrib>Murakami, Tatsuhiko</creatorcontrib><creatorcontrib>Kaneko, Masayuki</creatorcontrib><creatorcontrib>Asada, Rie</creatorcontrib><creatorcontrib>Matsuhisa, Koji</creatorcontrib><creatorcontrib>Saito, Atsushi</creatorcontrib><creatorcontrib>Imaizumi, Kazunori</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanemoto, Soshi</au><au>Nitani, Ryota</au><au>Murakami, Tatsuhiko</au><au>Kaneko, Masayuki</au><au>Asada, Rie</au><au>Matsuhisa, Koji</au><au>Saito, Atsushi</au><au>Imaizumi, Kazunori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2016-11-11</date><risdate>2016</risdate><volume>480</volume><issue>2</issue><spage>166</spage><epage>172</epage><pages>166-172</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here, we demonstrate a novel aspect of the UPR by electron microscopy and immunostaining analyses, whereby multivesicular body (MVB) formation was enhanced after ER stress. This MVB formation was influenced by inhibition of ER stress transducers inositol required enzyme 1 (IRE1) and PKR-like ER kinase (PERK). Furthermore, exosome release was also increased during ER stress. However, in IRE1 or PERK deficient cells, exosome release was not upregulated, indicating that IRE1- and PERK-mediated pathways are involved in ER stress-dependent exosome release. •Endoplasmic reticulum (ER) stress induces multivesicular body (MVB) formation.•ER stress transducers IRE1 and PERK mediate MVB formation.•Exosome release is enhanced after ER stress.•IRE1 or PERK deficiency blocks upregulation of ER stress-dependent exosome release.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27725157</pmid><doi>10.1016/j.bbrc.2016.10.019</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2016-11, Vol.480 (2), p.166-172
issn 0006-291X
1090-2104
language eng
recordid cdi_osti_scitechconnect_22696685
source ScienceDirect Freedom Collection
subjects 60 APPLIED LIFE SCIENCES
eIF-2 Kinase - metabolism
ELECTRON MICROSCOPY
ENDOPLASMIC RETICULUM
Endoplasmic Reticulum Stress - physiology
Endoribonucleases - metabolism
Exosome
Exosomes - metabolism
HeLa Cells
Humans
IRE1
Multivesicular Bodies - physiology
Multivesicular body
PERK
Protein-Serine-Threonine Kinases - metabolism
Signal Transduction
STRESSES
title Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivesicular%20body%20formation%20enhancement%20and%20exosome%20release%20during%20endoplasmic%20reticulum%20stress&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Kanemoto,%20Soshi&rft.date=2016-11-11&rft.volume=480&rft.issue=2&rft.spage=166&rft.epage=172&rft.pages=166-172&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2016.10.019&rft_dat=%3Cproquest_osti_%3E1835388406%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-c57f630e5678891d90e50cbb8713c1cfaa2f335d733337ffb9b0e3949e887e5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835388406&rft_id=info:pmid/27725157&rfr_iscdi=true