Loading…

Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma

Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the pr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2017-11, Vol.349, p.122-136
Main Authors: Song, Wanjun, Zhang, Hou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-1ab0b39bf324ed0ee325f3c577dfe2785ffc2d6fd6ba177d42f62c5a531f2f0e3
cites cdi_FETCH-LOGICAL-c353t-1ab0b39bf324ed0ee325f3c577dfe2785ffc2d6fd6ba177d42f62c5a531f2f0e3
container_end_page 136
container_issue
container_start_page 122
container_title Journal of computational physics
container_volume 349
creator Song, Wanjun
Zhang, Hou
description Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.
doi_str_mv 10.1016/j.jcp.2017.08.017
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22701629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117305880</els_id><sourcerecordid>2056032997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-1ab0b39bf324ed0ee325f3c577dfe2785ffc2d6fd6ba177d42f62c5a531f2f0e3</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouD5-gLeA5xk7yc4LTyK-QPGi55DNdNwMM8mYZIX115tlBW-emqSriuqPkAsGJQNWXw3loOeSA2tKaMs8DsiCQQcFb1h9SBYAnBVd17FjchLjAABttWwXxL3g5MO28HOyk_3Gnsa1NYn6GYNKPlA1JgxOJes-aG8D6mS9o3aaR6ttosY6mzBvjMGATiPNOfntJ2UdnTCtfU9NzplHFSd1Ro6MGiOe_85T8n5_93b7WDy_Pjzd3jwXWlQiFUytYCW6lRF8iT0gCl4Zoaum6Q3ypq2M0byvTV-vFMufS25qritVCWa4ARSn5HKf62OyMuamqNfaO5f7S86bjIx3f6o5-M8NxiQHv8nHjlFyqGoQvOuarGJ7lQ4-xoBGzsFOKmwlA7mDLweZ4csdfAmtzCN7rvcezEd-WQy7Djs8e4Sy9_Yf9w-SOY8E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056032997</pqid></control><display><type>article</type><title>Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma</title><source>ScienceDirect Journals</source><creator>Song, Wanjun ; Zhang, Hou</creator><creatorcontrib>Song, Wanjun ; Zhang, Hou</creatorcontrib><description>Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.08.017</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Alternating direction implicit methods ; Alternating direction implicit technique ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COLLISIONAL PLASMA ; Collisional plasmas ; Computational efficiency ; Computational physics ; Computer memory ; Computer simulation ; COMPUTERS ; Computing time ; Conductors ; Convolution ; Dispersion ; ELECTRIC CONDUCTORS ; ELECTRON COLLISIONS ; Electrons ; FDTD ; Finite difference method ; Finite difference time domain method ; Finite element analysis ; Gaussian elimination ; Iterative methods ; LANGMUIR FREQUENCY ; Mathematical analysis ; MATHEMATICAL OPERATORS ; Multilayers ; Numerical dispersion ; Optimization ; Plasma ; Plasma frequencies ; PLASMA SHEET ; Recursive methods ; Reflectance ; Reflection ; Shift operator ; Time domain analysis ; Z transforms</subject><ispartof>Journal of computational physics, 2017-11, Vol.349, p.122-136</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Nov 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-1ab0b39bf324ed0ee325f3c577dfe2785ffc2d6fd6ba177d42f62c5a531f2f0e3</citedby><cites>FETCH-LOGICAL-c353t-1ab0b39bf324ed0ee325f3c577dfe2785ffc2d6fd6ba177d42f62c5a531f2f0e3</cites><orcidid>0000-0002-3851-6526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22701629$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Wanjun</creatorcontrib><creatorcontrib>Zhang, Hou</creatorcontrib><title>Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma</title><title>Journal of computational physics</title><description>Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.</description><subject>Alternating direction implicit methods</subject><subject>Alternating direction implicit technique</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COLLISIONAL PLASMA</subject><subject>Collisional plasmas</subject><subject>Computational efficiency</subject><subject>Computational physics</subject><subject>Computer memory</subject><subject>Computer simulation</subject><subject>COMPUTERS</subject><subject>Computing time</subject><subject>Conductors</subject><subject>Convolution</subject><subject>Dispersion</subject><subject>ELECTRIC CONDUCTORS</subject><subject>ELECTRON COLLISIONS</subject><subject>Electrons</subject><subject>FDTD</subject><subject>Finite difference method</subject><subject>Finite difference time domain method</subject><subject>Finite element analysis</subject><subject>Gaussian elimination</subject><subject>Iterative methods</subject><subject>LANGMUIR FREQUENCY</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL OPERATORS</subject><subject>Multilayers</subject><subject>Numerical dispersion</subject><subject>Optimization</subject><subject>Plasma</subject><subject>Plasma frequencies</subject><subject>PLASMA SHEET</subject><subject>Recursive methods</subject><subject>Reflectance</subject><subject>Reflection</subject><subject>Shift operator</subject><subject>Time domain analysis</subject><subject>Z transforms</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouD5-gLeA5xk7yc4LTyK-QPGi55DNdNwMM8mYZIX115tlBW-emqSriuqPkAsGJQNWXw3loOeSA2tKaMs8DsiCQQcFb1h9SBYAnBVd17FjchLjAABttWwXxL3g5MO28HOyk_3Gnsa1NYn6GYNKPlA1JgxOJes-aG8D6mS9o3aaR6ttosY6mzBvjMGATiPNOfntJ2UdnTCtfU9NzplHFSd1Ro6MGiOe_85T8n5_93b7WDy_Pjzd3jwXWlQiFUytYCW6lRF8iT0gCl4Zoaum6Q3ypq2M0byvTV-vFMufS25qritVCWa4ARSn5HKf62OyMuamqNfaO5f7S86bjIx3f6o5-M8NxiQHv8nHjlFyqGoQvOuarGJ7lQ4-xoBGzsFOKmwlA7mDLweZ4csdfAmtzCN7rvcezEd-WQy7Djs8e4Sy9_Yf9w-SOY8E</recordid><startdate>20171115</startdate><enddate>20171115</enddate><creator>Song, Wanjun</creator><creator>Zhang, Hou</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3851-6526</orcidid></search><sort><creationdate>20171115</creationdate><title>Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma</title><author>Song, Wanjun ; Zhang, Hou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-1ab0b39bf324ed0ee325f3c577dfe2785ffc2d6fd6ba177d42f62c5a531f2f0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alternating direction implicit methods</topic><topic>Alternating direction implicit technique</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COLLISIONAL PLASMA</topic><topic>Collisional plasmas</topic><topic>Computational efficiency</topic><topic>Computational physics</topic><topic>Computer memory</topic><topic>Computer simulation</topic><topic>COMPUTERS</topic><topic>Computing time</topic><topic>Conductors</topic><topic>Convolution</topic><topic>Dispersion</topic><topic>ELECTRIC CONDUCTORS</topic><topic>ELECTRON COLLISIONS</topic><topic>Electrons</topic><topic>FDTD</topic><topic>Finite difference method</topic><topic>Finite difference time domain method</topic><topic>Finite element analysis</topic><topic>Gaussian elimination</topic><topic>Iterative methods</topic><topic>LANGMUIR FREQUENCY</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL OPERATORS</topic><topic>Multilayers</topic><topic>Numerical dispersion</topic><topic>Optimization</topic><topic>Plasma</topic><topic>Plasma frequencies</topic><topic>PLASMA SHEET</topic><topic>Recursive methods</topic><topic>Reflectance</topic><topic>Reflection</topic><topic>Shift operator</topic><topic>Time domain analysis</topic><topic>Z transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Wanjun</creatorcontrib><creatorcontrib>Zhang, Hou</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Wanjun</au><au>Zhang, Hou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma</atitle><jtitle>Journal of computational physics</jtitle><date>2017-11-15</date><risdate>2017</risdate><volume>349</volume><spage>122</spage><epage>136</epage><pages>122-136</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.08.017</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3851-6526</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2017-11, Vol.349, p.122-136
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_22701629
source ScienceDirect Journals
subjects Alternating direction implicit methods
Alternating direction implicit technique
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COLLISIONAL PLASMA
Collisional plasmas
Computational efficiency
Computational physics
Computer memory
Computer simulation
COMPUTERS
Computing time
Conductors
Convolution
Dispersion
ELECTRIC CONDUCTORS
ELECTRON COLLISIONS
Electrons
FDTD
Finite difference method
Finite difference time domain method
Finite element analysis
Gaussian elimination
Iterative methods
LANGMUIR FREQUENCY
Mathematical analysis
MATHEMATICAL OPERATORS
Multilayers
Numerical dispersion
Optimization
Plasma
Plasma frequencies
PLASMA SHEET
Recursive methods
Reflectance
Reflection
Shift operator
Time domain analysis
Z transforms
title Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memory-optimized%20shift%20operator%20alternating%20direction%20implicit%20finite%20difference%20time%20domain%20method%20for%20plasma&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Song,%20Wanjun&rft.date=2017-11-15&rft.volume=349&rft.spage=122&rft.epage=136&rft.pages=122-136&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.08.017&rft_dat=%3Cproquest_osti_%3E2056032997%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-1ab0b39bf324ed0ee325f3c577dfe2785ffc2d6fd6ba177d42f62c5a531f2f0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2056032997&rft_id=info:pmid/&rfr_iscdi=true