Loading…
Temporal compression of pulses from a 100-KHz-repetiton-rate femtosecond ytterbium laser
We report the temporal compression a femtosecond ytterbium laser pulse at a pulse repetition rate of 100 kHz using the effect of nonlinear self-phase modulation in a gas-filled capillary. A 260-fs laser pulse is compressed down to 17 fs with an energy efficiency of 40%. An average radiation power at...
Saved in:
Published in: | Quantum electronics (Woodbury, N.Y.) N.Y.), 2016-01, Vol.46 (8), p.675-678 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the temporal compression a femtosecond ytterbium laser pulse at a pulse repetition rate of 100 kHz using the effect of nonlinear self-phase modulation in a gas-filled capillary. A 260-fs laser pulse is compressed down to 17 fs with an energy efficiency of 40%. An average radiation power at the compressor output is 2 W. At a second compression stage, the time contrast is increased and the pulse duration is reduced in the process of the second harmonic generation in a KDP crystal. The obtained pulses have a duration of 11 fs at an efficiency of 35%. |
---|---|
ISSN: | 1063-7818 1468-4799 |
DOI: | 10.1070/QEL16147 |