Loading…
Double-Crystal Rocking Curve Simulation Using 2D Spectral Angular Diagrams of X-Ray Radiation
A new approach to numerical simulation of double-crystal rocking curves is proposed. This approach is based on the use of experimental spectral angular diagrams of X-ray intensity distribution. Special calculation algorithms, which take into account the instrumental function of X-ray diffractometer...
Saved in:
Published in: | Crystallography reports 2018-07, Vol.63 (4), p.521-530 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new approach to numerical simulation of double-crystal rocking curves is proposed. This approach is based on the use of experimental spectral angular diagrams of X-ray intensity distribution. Special calculation algorithms, which take into account the instrumental function of X-ray diffractometer and possible effects of dispersion and Bragg reflection asymmetry, have been developed and applied. A specific feature of the proposed approach is the possibility of visualizing the 2D spectral angular diagram of X-ray beam after its interaction with each element of the scheme. The approach makes it possible to perform calculations for a wide range of radiation sources (from an X-ray tube with any anode to a synchrotron radiation source) and X-ray optical elements (slits and monochromators). A comparison of simulation results and experimental data for a Si(110) crystal sample has confirmed adequacy of the proposed approach and its applicability for simulating diffraction patterns recorded in real experiments. |
---|---|
ISSN: | 1063-7745 1562-689X |
DOI: | 10.1134/S1063774518040041 |