Loading…

The Pulsed Excitation in Two-Qubit Systems

The temporal dynamics of absorption of a single-photon pulse by two qubits interacting with a microwave field of a one-dimensional waveguide have been studied. The theory, which allows one to use arbitrary shapes of the input single-photon wave packet as an initial condition, as well as investigate...

Full description

Saved in:
Bibliographic Details
Published in:Physics of the solid state 2018-11, Vol.60 (11), p.2109-2114
Main Authors: Greenberg, Ya. S., Shtygashev, A. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The temporal dynamics of absorption of a single-photon pulse by two qubits interacting with a microwave field of a one-dimensional waveguide have been studied. The theory, which allows one to use arbitrary shapes of the input single-photon wave packet as an initial condition, as well as investigate the excitation dynamics of each qubit, has been developed. The numerical calculation is performed for the packet of a Gaussian shape, at different parameters of frequency detuning and duration of the input pulse. The excitation dynamics of both identical and nonidentical qubits have been studied. It has been specifically shown that it is possible to form symmetric and antisymmetric entangled states for identical qubits.
ISSN:1063-7834
1090-6460
DOI:10.1134/S1063783418110094