Loading…

Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis

Sunflower stalk saccharification lignin residue was converted to a completely bio-based biopolyol via solvothermal liquefaction using acid catalyst. Different isomer-type biobutanediols were used to replace petroleum-derived reaction solvents. The reaction parameters were optimized according to meas...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymers and the environment 2018-08, Vol.26 (8), p.3493-3501
Main Authors: Jung, Jae Yeong, Yu, Ju-Hyun, Lee, Eun Yeol
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43
cites cdi_FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43
container_end_page 3501
container_issue 8
container_start_page 3493
container_title Journal of polymers and the environment
container_volume 26
creator Jung, Jae Yeong
Yu, Ju-Hyun
Lee, Eun Yeol
description Sunflower stalk saccharification lignin residue was converted to a completely bio-based biopolyol via solvothermal liquefaction using acid catalyst. Different isomer-type biobutanediols were used to replace petroleum-derived reaction solvents. The reaction parameters were optimized according to measurement of the biomass conversion and the hydroxyl and acid numbers. The lignin-derived biopolyol with a biomass conversion of 80.1%, hydroxyl number of 819.0 mg KOH/g, and acid number of 26.5 mg KOH/g was produced in the optimal condition (reaction temperature of 120 °C, 4 wt% acid catalyst loading, reaction time of 120 min, and 25 wt% biomass loading). The lignin-derived biopolyol was neutralized to decrease the acid number. The neutralized biopolyol was used to synthesize biopolyurethane via polymerization with poly(propylene glycol), tolylene 2,4-diisocyanate terminated. Urethane bond formation was confirmed by FT-IR analysis. The biopolyurethane showed good thermal properties, such as a T d5 of 273.4 °C, T d10 of 305.8 °C, and a single degradation peak at 387.2 °C.
doi_str_mv 10.1007/s10924-018-1235-2
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22787997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027405959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhqMKpJbSB-jNEmeD7cTr-FhWUJBWoiL0bLnOeNfFawfbKdrX48lwCKgnTjPSfP8_M_qb5pqSt5QQ8S5TIlmHCe0xZS3H7Ky5oFww3EsqXyz9ZoMZ79rz5lXOj4QQWXUXza9tPE4eCvgTeu8iftAZRnQX_Sl6dJfiOJviYkA2xSMa5mB9_AkJDUX772jQxhx0ctYZ_YfauX1wAX2F7MYZ0JPTaIj-KZYDpKP2df5jBqtXy_vswn5Z-jAXHWB0deNCQyhIhxHdTJP_Z1ziAk71rDlBOVQcDadQbbPLr5uXVvsMV3_rZXP_8cO37Se8-3L7eXuzw6btacEbNpKeSyqMtELInjKqiTaM1qkUhnec9NZwIkawhmlBWkk7yttW9iMB27WXzZvVN-biVDaugDmYGAKYohgTvZBSPFNTivXZXNRjnFOohylGmOgIl1xWiq6USTHnBFZNyR11OilK1BKoWgNVNVC1BKpY1bBVkysb9pCenf8v-g1lPabs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027405959</pqid></control><display><type>article</type><title>Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis</title><source>Springer Nature</source><creator>Jung, Jae Yeong ; Yu, Ju-Hyun ; Lee, Eun Yeol</creator><creatorcontrib>Jung, Jae Yeong ; Yu, Ju-Hyun ; Lee, Eun Yeol</creatorcontrib><description>Sunflower stalk saccharification lignin residue was converted to a completely bio-based biopolyol via solvothermal liquefaction using acid catalyst. Different isomer-type biobutanediols were used to replace petroleum-derived reaction solvents. The reaction parameters were optimized according to measurement of the biomass conversion and the hydroxyl and acid numbers. The lignin-derived biopolyol with a biomass conversion of 80.1%, hydroxyl number of 819.0 mg KOH/g, and acid number of 26.5 mg KOH/g was produced in the optimal condition (reaction temperature of 120 °C, 4 wt% acid catalyst loading, reaction time of 120 min, and 25 wt% biomass loading). The lignin-derived biopolyol was neutralized to decrease the acid number. The neutralized biopolyol was used to synthesize biopolyurethane via polymerization with poly(propylene glycol), tolylene 2,4-diisocyanate terminated. Urethane bond formation was confirmed by FT-IR analysis. The biopolyurethane showed good thermal properties, such as a T d5 of 273.4 °C, T d10 of 305.8 °C, and a single degradation peak at 387.2 °C.</description><identifier>ISSN: 1566-2543</identifier><identifier>EISSN: 1572-8919</identifier><identifier>DOI: 10.1007/s10924-018-1235-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acids ; Biodegradation ; BIOLOGICAL MATERIALS ; BIOMASS ; BUTANEDIOLS ; Catalysis ; CATALYSTS ; Chemistry ; Chemistry and Materials Science ; Conversion ; Environmental Chemistry ; Environmental Engineering/Biotechnology ; Ethyl carbamate ; FOURIER TRANSFORM SPECTROMETERS ; Industrial Chemistry/Chemical Engineering ; Infrared radiation ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LIGNIN ; LIQUEFACTION ; Materials Science ; Original Paper ; Polymer Sciences ; POLYMERIZATION ; POTASSIUM HYDROXIDES ; PROPYLENE ; Propylene glycol ; Reaction time ; RESIDUES ; SACCHARIFICATION ; SOLVENTS ; SUNFLOWERS ; SYNTHESIS ; Thermal properties ; THERMODYNAMIC PROPERTIES ; URETHANE</subject><ispartof>Journal of polymers and the environment, 2018-08, Vol.26 (8), p.3493-3501</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Polymers and the Environment is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43</citedby><cites>FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22787997$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Jae Yeong</creatorcontrib><creatorcontrib>Yu, Ju-Hyun</creatorcontrib><creatorcontrib>Lee, Eun Yeol</creatorcontrib><title>Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis</title><title>Journal of polymers and the environment</title><addtitle>J Polym Environ</addtitle><description>Sunflower stalk saccharification lignin residue was converted to a completely bio-based biopolyol via solvothermal liquefaction using acid catalyst. Different isomer-type biobutanediols were used to replace petroleum-derived reaction solvents. The reaction parameters were optimized according to measurement of the biomass conversion and the hydroxyl and acid numbers. The lignin-derived biopolyol with a biomass conversion of 80.1%, hydroxyl number of 819.0 mg KOH/g, and acid number of 26.5 mg KOH/g was produced in the optimal condition (reaction temperature of 120 °C, 4 wt% acid catalyst loading, reaction time of 120 min, and 25 wt% biomass loading). The lignin-derived biopolyol was neutralized to decrease the acid number. The neutralized biopolyol was used to synthesize biopolyurethane via polymerization with poly(propylene glycol), tolylene 2,4-diisocyanate terminated. Urethane bond formation was confirmed by FT-IR analysis. The biopolyurethane showed good thermal properties, such as a T d5 of 273.4 °C, T d10 of 305.8 °C, and a single degradation peak at 387.2 °C.</description><subject>Acids</subject><subject>Biodegradation</subject><subject>BIOLOGICAL MATERIALS</subject><subject>BIOMASS</subject><subject>BUTANEDIOLS</subject><subject>Catalysis</subject><subject>CATALYSTS</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Conversion</subject><subject>Environmental Chemistry</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Ethyl carbamate</subject><subject>FOURIER TRANSFORM SPECTROMETERS</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Infrared radiation</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LIGNIN</subject><subject>LIQUEFACTION</subject><subject>Materials Science</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>POLYMERIZATION</subject><subject>POTASSIUM HYDROXIDES</subject><subject>PROPYLENE</subject><subject>Propylene glycol</subject><subject>Reaction time</subject><subject>RESIDUES</subject><subject>SACCHARIFICATION</subject><subject>SOLVENTS</subject><subject>SUNFLOWERS</subject><subject>SYNTHESIS</subject><subject>Thermal properties</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>URETHANE</subject><issn>1566-2543</issn><issn>1572-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhqMKpJbSB-jNEmeD7cTr-FhWUJBWoiL0bLnOeNfFawfbKdrX48lwCKgnTjPSfP8_M_qb5pqSt5QQ8S5TIlmHCe0xZS3H7Ky5oFww3EsqXyz9ZoMZ79rz5lXOj4QQWXUXza9tPE4eCvgTeu8iftAZRnQX_Sl6dJfiOJviYkA2xSMa5mB9_AkJDUX772jQxhx0ctYZ_YfauX1wAX2F7MYZ0JPTaIj-KZYDpKP2df5jBqtXy_vswn5Z-jAXHWB0deNCQyhIhxHdTJP_Z1ziAk71rDlBOVQcDadQbbPLr5uXVvsMV3_rZXP_8cO37Se8-3L7eXuzw6btacEbNpKeSyqMtELInjKqiTaM1qkUhnec9NZwIkawhmlBWkk7yttW9iMB27WXzZvVN-biVDaugDmYGAKYohgTvZBSPFNTivXZXNRjnFOohylGmOgIl1xWiq6USTHnBFZNyR11OilK1BKoWgNVNVC1BKpY1bBVkysb9pCenf8v-g1lPabs</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Jung, Jae Yeong</creator><creator>Yu, Ju-Hyun</creator><creator>Lee, Eun Yeol</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>20180801</creationdate><title>Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis</title><author>Jung, Jae Yeong ; Yu, Ju-Hyun ; Lee, Eun Yeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acids</topic><topic>Biodegradation</topic><topic>BIOLOGICAL MATERIALS</topic><topic>BIOMASS</topic><topic>BUTANEDIOLS</topic><topic>Catalysis</topic><topic>CATALYSTS</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Conversion</topic><topic>Environmental Chemistry</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Ethyl carbamate</topic><topic>FOURIER TRANSFORM SPECTROMETERS</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Infrared radiation</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LIGNIN</topic><topic>LIQUEFACTION</topic><topic>Materials Science</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>POLYMERIZATION</topic><topic>POTASSIUM HYDROXIDES</topic><topic>PROPYLENE</topic><topic>Propylene glycol</topic><topic>Reaction time</topic><topic>RESIDUES</topic><topic>SACCHARIFICATION</topic><topic>SOLVENTS</topic><topic>SUNFLOWERS</topic><topic>SYNTHESIS</topic><topic>Thermal properties</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>URETHANE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Jae Yeong</creatorcontrib><creatorcontrib>Yu, Ju-Hyun</creatorcontrib><creatorcontrib>Lee, Eun Yeol</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database (ProQuest)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of polymers and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Jae Yeong</au><au>Yu, Ju-Hyun</au><au>Lee, Eun Yeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis</atitle><jtitle>Journal of polymers and the environment</jtitle><stitle>J Polym Environ</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>26</volume><issue>8</issue><spage>3493</spage><epage>3501</epage><pages>3493-3501</pages><issn>1566-2543</issn><eissn>1572-8919</eissn><abstract>Sunflower stalk saccharification lignin residue was converted to a completely bio-based biopolyol via solvothermal liquefaction using acid catalyst. Different isomer-type biobutanediols were used to replace petroleum-derived reaction solvents. The reaction parameters were optimized according to measurement of the biomass conversion and the hydroxyl and acid numbers. The lignin-derived biopolyol with a biomass conversion of 80.1%, hydroxyl number of 819.0 mg KOH/g, and acid number of 26.5 mg KOH/g was produced in the optimal condition (reaction temperature of 120 °C, 4 wt% acid catalyst loading, reaction time of 120 min, and 25 wt% biomass loading). The lignin-derived biopolyol was neutralized to decrease the acid number. The neutralized biopolyol was used to synthesize biopolyurethane via polymerization with poly(propylene glycol), tolylene 2,4-diisocyanate terminated. Urethane bond formation was confirmed by FT-IR analysis. The biopolyurethane showed good thermal properties, such as a T d5 of 273.4 °C, T d10 of 305.8 °C, and a single degradation peak at 387.2 °C.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10924-018-1235-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1566-2543
ispartof Journal of polymers and the environment, 2018-08, Vol.26 (8), p.3493-3501
issn 1566-2543
1572-8919
language eng
recordid cdi_osti_scitechconnect_22787997
source Springer Nature
subjects Acids
Biodegradation
BIOLOGICAL MATERIALS
BIOMASS
BUTANEDIOLS
Catalysis
CATALYSTS
Chemistry
Chemistry and Materials Science
Conversion
Environmental Chemistry
Environmental Engineering/Biotechnology
Ethyl carbamate
FOURIER TRANSFORM SPECTROMETERS
Industrial Chemistry/Chemical Engineering
Infrared radiation
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
LIGNIN
LIQUEFACTION
Materials Science
Original Paper
Polymer Sciences
POLYMERIZATION
POTASSIUM HYDROXIDES
PROPYLENE
Propylene glycol
Reaction time
RESIDUES
SACCHARIFICATION
SOLVENTS
SUNFLOWERS
SYNTHESIS
Thermal properties
THERMODYNAMIC PROPERTIES
URETHANE
title Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completely%20Bio-based%20Polyol%20Production%20from%20Sunflower%20Stalk%20Saccharification%20Lignin%20Residue%20via%20Solvothermal%20Liquefaction%20Using%20Biobutanediol%20Solvent%20and%20Application%20to%20Biopolyurethane%20Synthesis&rft.jtitle=Journal%20of%20polymers%20and%20the%20environment&rft.au=Jung,%20Jae%20Yeong&rft.date=2018-08-01&rft.volume=26&rft.issue=8&rft.spage=3493&rft.epage=3501&rft.pages=3493-3501&rft.issn=1566-2543&rft.eissn=1572-8919&rft_id=info:doi/10.1007/s10924-018-1235-2&rft_dat=%3Cproquest_osti_%3E2027405959%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2027405959&rft_id=info:pmid/&rfr_iscdi=true