Loading…
Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis
Sunflower stalk saccharification lignin residue was converted to a completely bio-based biopolyol via solvothermal liquefaction using acid catalyst. Different isomer-type biobutanediols were used to replace petroleum-derived reaction solvents. The reaction parameters were optimized according to meas...
Saved in:
Published in: | Journal of polymers and the environment 2018-08, Vol.26 (8), p.3493-3501 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43 |
container_end_page | 3501 |
container_issue | 8 |
container_start_page | 3493 |
container_title | Journal of polymers and the environment |
container_volume | 26 |
creator | Jung, Jae Yeong Yu, Ju-Hyun Lee, Eun Yeol |
description | Sunflower stalk saccharification lignin residue was converted to a completely bio-based biopolyol via solvothermal liquefaction using acid catalyst. Different isomer-type biobutanediols were used to replace petroleum-derived reaction solvents. The reaction parameters were optimized according to measurement of the biomass conversion and the hydroxyl and acid numbers. The lignin-derived biopolyol with a biomass conversion of 80.1%, hydroxyl number of 819.0 mg KOH/g, and acid number of 26.5 mg KOH/g was produced in the optimal condition (reaction temperature of 120 °C, 4 wt% acid catalyst loading, reaction time of 120 min, and 25 wt% biomass loading). The lignin-derived biopolyol was neutralized to decrease the acid number. The neutralized biopolyol was used to synthesize biopolyurethane via polymerization with poly(propylene glycol), tolylene 2,4-diisocyanate terminated. Urethane bond formation was confirmed by FT-IR analysis. The biopolyurethane showed good thermal properties, such as a T
d5
of 273.4 °C, T
d10
of 305.8 °C, and a single degradation peak at 387.2 °C. |
doi_str_mv | 10.1007/s10924-018-1235-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22787997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027405959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhqMKpJbSB-jNEmeD7cTr-FhWUJBWoiL0bLnOeNfFawfbKdrX48lwCKgnTjPSfP8_M_qb5pqSt5QQ8S5TIlmHCe0xZS3H7Ky5oFww3EsqXyz9ZoMZ79rz5lXOj4QQWXUXza9tPE4eCvgTeu8iftAZRnQX_Sl6dJfiOJviYkA2xSMa5mB9_AkJDUX772jQxhx0ctYZ_YfauX1wAX2F7MYZ0JPTaIj-KZYDpKP2df5jBqtXy_vswn5Z-jAXHWB0deNCQyhIhxHdTJP_Z1ziAk71rDlBOVQcDadQbbPLr5uXVvsMV3_rZXP_8cO37Se8-3L7eXuzw6btacEbNpKeSyqMtELInjKqiTaM1qkUhnec9NZwIkawhmlBWkk7yttW9iMB27WXzZvVN-biVDaugDmYGAKYohgTvZBSPFNTivXZXNRjnFOohylGmOgIl1xWiq6USTHnBFZNyR11OilK1BKoWgNVNVC1BKpY1bBVkysb9pCenf8v-g1lPabs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027405959</pqid></control><display><type>article</type><title>Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis</title><source>Springer Nature</source><creator>Jung, Jae Yeong ; Yu, Ju-Hyun ; Lee, Eun Yeol</creator><creatorcontrib>Jung, Jae Yeong ; Yu, Ju-Hyun ; Lee, Eun Yeol</creatorcontrib><description>Sunflower stalk saccharification lignin residue was converted to a completely bio-based biopolyol via solvothermal liquefaction using acid catalyst. Different isomer-type biobutanediols were used to replace petroleum-derived reaction solvents. The reaction parameters were optimized according to measurement of the biomass conversion and the hydroxyl and acid numbers. The lignin-derived biopolyol with a biomass conversion of 80.1%, hydroxyl number of 819.0 mg KOH/g, and acid number of 26.5 mg KOH/g was produced in the optimal condition (reaction temperature of 120 °C, 4 wt% acid catalyst loading, reaction time of 120 min, and 25 wt% biomass loading). The lignin-derived biopolyol was neutralized to decrease the acid number. The neutralized biopolyol was used to synthesize biopolyurethane via polymerization with poly(propylene glycol), tolylene 2,4-diisocyanate terminated. Urethane bond formation was confirmed by FT-IR analysis. The biopolyurethane showed good thermal properties, such as a T
d5
of 273.4 °C, T
d10
of 305.8 °C, and a single degradation peak at 387.2 °C.</description><identifier>ISSN: 1566-2543</identifier><identifier>EISSN: 1572-8919</identifier><identifier>DOI: 10.1007/s10924-018-1235-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acids ; Biodegradation ; BIOLOGICAL MATERIALS ; BIOMASS ; BUTANEDIOLS ; Catalysis ; CATALYSTS ; Chemistry ; Chemistry and Materials Science ; Conversion ; Environmental Chemistry ; Environmental Engineering/Biotechnology ; Ethyl carbamate ; FOURIER TRANSFORM SPECTROMETERS ; Industrial Chemistry/Chemical Engineering ; Infrared radiation ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LIGNIN ; LIQUEFACTION ; Materials Science ; Original Paper ; Polymer Sciences ; POLYMERIZATION ; POTASSIUM HYDROXIDES ; PROPYLENE ; Propylene glycol ; Reaction time ; RESIDUES ; SACCHARIFICATION ; SOLVENTS ; SUNFLOWERS ; SYNTHESIS ; Thermal properties ; THERMODYNAMIC PROPERTIES ; URETHANE</subject><ispartof>Journal of polymers and the environment, 2018-08, Vol.26 (8), p.3493-3501</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Polymers and the Environment is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43</citedby><cites>FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22787997$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Jae Yeong</creatorcontrib><creatorcontrib>Yu, Ju-Hyun</creatorcontrib><creatorcontrib>Lee, Eun Yeol</creatorcontrib><title>Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis</title><title>Journal of polymers and the environment</title><addtitle>J Polym Environ</addtitle><description>Sunflower stalk saccharification lignin residue was converted to a completely bio-based biopolyol via solvothermal liquefaction using acid catalyst. Different isomer-type biobutanediols were used to replace petroleum-derived reaction solvents. The reaction parameters were optimized according to measurement of the biomass conversion and the hydroxyl and acid numbers. The lignin-derived biopolyol with a biomass conversion of 80.1%, hydroxyl number of 819.0 mg KOH/g, and acid number of 26.5 mg KOH/g was produced in the optimal condition (reaction temperature of 120 °C, 4 wt% acid catalyst loading, reaction time of 120 min, and 25 wt% biomass loading). The lignin-derived biopolyol was neutralized to decrease the acid number. The neutralized biopolyol was used to synthesize biopolyurethane via polymerization with poly(propylene glycol), tolylene 2,4-diisocyanate terminated. Urethane bond formation was confirmed by FT-IR analysis. The biopolyurethane showed good thermal properties, such as a T
d5
of 273.4 °C, T
d10
of 305.8 °C, and a single degradation peak at 387.2 °C.</description><subject>Acids</subject><subject>Biodegradation</subject><subject>BIOLOGICAL MATERIALS</subject><subject>BIOMASS</subject><subject>BUTANEDIOLS</subject><subject>Catalysis</subject><subject>CATALYSTS</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Conversion</subject><subject>Environmental Chemistry</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Ethyl carbamate</subject><subject>FOURIER TRANSFORM SPECTROMETERS</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Infrared radiation</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LIGNIN</subject><subject>LIQUEFACTION</subject><subject>Materials Science</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>POLYMERIZATION</subject><subject>POTASSIUM HYDROXIDES</subject><subject>PROPYLENE</subject><subject>Propylene glycol</subject><subject>Reaction time</subject><subject>RESIDUES</subject><subject>SACCHARIFICATION</subject><subject>SOLVENTS</subject><subject>SUNFLOWERS</subject><subject>SYNTHESIS</subject><subject>Thermal properties</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>URETHANE</subject><issn>1566-2543</issn><issn>1572-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhqMKpJbSB-jNEmeD7cTr-FhWUJBWoiL0bLnOeNfFawfbKdrX48lwCKgnTjPSfP8_M_qb5pqSt5QQ8S5TIlmHCe0xZS3H7Ky5oFww3EsqXyz9ZoMZ79rz5lXOj4QQWXUXza9tPE4eCvgTeu8iftAZRnQX_Sl6dJfiOJviYkA2xSMa5mB9_AkJDUX772jQxhx0ctYZ_YfauX1wAX2F7MYZ0JPTaIj-KZYDpKP2df5jBqtXy_vswn5Z-jAXHWB0deNCQyhIhxHdTJP_Z1ziAk71rDlBOVQcDadQbbPLr5uXVvsMV3_rZXP_8cO37Se8-3L7eXuzw6btacEbNpKeSyqMtELInjKqiTaM1qkUhnec9NZwIkawhmlBWkk7yttW9iMB27WXzZvVN-biVDaugDmYGAKYohgTvZBSPFNTivXZXNRjnFOohylGmOgIl1xWiq6USTHnBFZNyR11OilK1BKoWgNVNVC1BKpY1bBVkysb9pCenf8v-g1lPabs</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Jung, Jae Yeong</creator><creator>Yu, Ju-Hyun</creator><creator>Lee, Eun Yeol</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>20180801</creationdate><title>Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis</title><author>Jung, Jae Yeong ; Yu, Ju-Hyun ; Lee, Eun Yeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acids</topic><topic>Biodegradation</topic><topic>BIOLOGICAL MATERIALS</topic><topic>BIOMASS</topic><topic>BUTANEDIOLS</topic><topic>Catalysis</topic><topic>CATALYSTS</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Conversion</topic><topic>Environmental Chemistry</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Ethyl carbamate</topic><topic>FOURIER TRANSFORM SPECTROMETERS</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Infrared radiation</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LIGNIN</topic><topic>LIQUEFACTION</topic><topic>Materials Science</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>POLYMERIZATION</topic><topic>POTASSIUM HYDROXIDES</topic><topic>PROPYLENE</topic><topic>Propylene glycol</topic><topic>Reaction time</topic><topic>RESIDUES</topic><topic>SACCHARIFICATION</topic><topic>SOLVENTS</topic><topic>SUNFLOWERS</topic><topic>SYNTHESIS</topic><topic>Thermal properties</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>URETHANE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Jae Yeong</creatorcontrib><creatorcontrib>Yu, Ju-Hyun</creatorcontrib><creatorcontrib>Lee, Eun Yeol</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database (ProQuest)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of polymers and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Jae Yeong</au><au>Yu, Ju-Hyun</au><au>Lee, Eun Yeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis</atitle><jtitle>Journal of polymers and the environment</jtitle><stitle>J Polym Environ</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>26</volume><issue>8</issue><spage>3493</spage><epage>3501</epage><pages>3493-3501</pages><issn>1566-2543</issn><eissn>1572-8919</eissn><abstract>Sunflower stalk saccharification lignin residue was converted to a completely bio-based biopolyol via solvothermal liquefaction using acid catalyst. Different isomer-type biobutanediols were used to replace petroleum-derived reaction solvents. The reaction parameters were optimized according to measurement of the biomass conversion and the hydroxyl and acid numbers. The lignin-derived biopolyol with a biomass conversion of 80.1%, hydroxyl number of 819.0 mg KOH/g, and acid number of 26.5 mg KOH/g was produced in the optimal condition (reaction temperature of 120 °C, 4 wt% acid catalyst loading, reaction time of 120 min, and 25 wt% biomass loading). The lignin-derived biopolyol was neutralized to decrease the acid number. The neutralized biopolyol was used to synthesize biopolyurethane via polymerization with poly(propylene glycol), tolylene 2,4-diisocyanate terminated. Urethane bond formation was confirmed by FT-IR analysis. The biopolyurethane showed good thermal properties, such as a T
d5
of 273.4 °C, T
d10
of 305.8 °C, and a single degradation peak at 387.2 °C.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10924-018-1235-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1566-2543 |
ispartof | Journal of polymers and the environment, 2018-08, Vol.26 (8), p.3493-3501 |
issn | 1566-2543 1572-8919 |
language | eng |
recordid | cdi_osti_scitechconnect_22787997 |
source | Springer Nature |
subjects | Acids Biodegradation BIOLOGICAL MATERIALS BIOMASS BUTANEDIOLS Catalysis CATALYSTS Chemistry Chemistry and Materials Science Conversion Environmental Chemistry Environmental Engineering/Biotechnology Ethyl carbamate FOURIER TRANSFORM SPECTROMETERS Industrial Chemistry/Chemical Engineering Infrared radiation INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY LIGNIN LIQUEFACTION Materials Science Original Paper Polymer Sciences POLYMERIZATION POTASSIUM HYDROXIDES PROPYLENE Propylene glycol Reaction time RESIDUES SACCHARIFICATION SOLVENTS SUNFLOWERS SYNTHESIS Thermal properties THERMODYNAMIC PROPERTIES URETHANE |
title | Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completely%20Bio-based%20Polyol%20Production%20from%20Sunflower%20Stalk%20Saccharification%20Lignin%20Residue%20via%20Solvothermal%20Liquefaction%20Using%20Biobutanediol%20Solvent%20and%20Application%20to%20Biopolyurethane%20Synthesis&rft.jtitle=Journal%20of%20polymers%20and%20the%20environment&rft.au=Jung,%20Jae%20Yeong&rft.date=2018-08-01&rft.volume=26&rft.issue=8&rft.spage=3493&rft.epage=3501&rft.pages=3493-3501&rft.issn=1566-2543&rft.eissn=1572-8919&rft_id=info:doi/10.1007/s10924-018-1235-2&rft_dat=%3Cproquest_osti_%3E2027405959%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-62d085917c9f7798121a0ac2138197c54508fc507defc2a703914153398d0ef43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2027405959&rft_id=info:pmid/&rfr_iscdi=true |