Loading…

Leveraging Curvature on N‐Doped Carbon Materials for Hydrogen Storage

Carbon sorbent materials have shown great promise for solid‐state hydrogen (H2) storage. Modification of these materials with nitrogen (N) dopants has been undertaken to develop materials that can store H2 at ambient temperatures. In this work density functional theory (DFT) calculations are used to...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-06, Vol.20 (25), p.e2310162-n/a
Main Authors: Rice, Peter S., Lee, Gabriel, Schwartz, Brayden, Autrey, Tom, Ginovska, Bojana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4002-733908b14b9fa9a1f3d443ca82eb3d07035cb003f8720e65881d28111955c33
cites cdi_FETCH-LOGICAL-c4002-733908b14b9fa9a1f3d443ca82eb3d07035cb003f8720e65881d28111955c33
container_end_page n/a
container_issue 25
container_start_page e2310162
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Rice, Peter S.
Lee, Gabriel
Schwartz, Brayden
Autrey, Tom
Ginovska, Bojana
description Carbon sorbent materials have shown great promise for solid‐state hydrogen (H2) storage. Modification of these materials with nitrogen (N) dopants has been undertaken to develop materials that can store H2 at ambient temperatures. In this work density functional theory (DFT) calculations are used to systematically probe the influence of curvature on the stability and activity of undoped and N‐doped carbon materials toward H binding. Specifically, four models of carbon materials are used: graphene, [5,5] carbon nanotube, [5,5] D5d‐C120, and C60, to extract and correlate the thermodynamic properties of active sites with varying degrees of sp2 hybridization (curvature). From the calculations and analysis, it is found that graphitic N‐doping is thermodynamically favored on more pyramidal sites with increased curvature. In contrast, it is found that the hydrogen binding energy is weakly affected by curvature and is dominated by electronic effects induced by N‐doping. These findings highlight the importance of modulating the heteroatom doping configuration and the lattice topology when developing materials for H2 storage. Using four models of carbon materials: graphene, [5,5] carbon nanotube, [5,5] D5d‐C120, and C60, the thermodynamic properties of active sites with varying degrees of curvature and graphitic N‐doping are correlated. The DFT calculations show that graphitic N‐doping is thermodynamically favored with increased curvaturewhile the hydrogen binding energy is weakly affected by curvature and is dominated by N‐doping.
doi_str_mv 10.1002/smll.202310162
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2282188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069540297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4002-733908b14b9fa9a1f3d443ca82eb3d07035cb003f8720e65881d28111955c33</originalsourceid><addsrcrecordid>eNqFkc1O3DAUha2qqPxuu0RR2bCZwfc6P_YSTVtACrAY9pbj3EyDMvFgJ1Sz4xH6jH0SjAYGiQ0rW77fOTrXh7HvwKfAOZ6FZddNkaMADjl-YXuQg5jkEtXX7R34LtsP4Z5zAZgW39iukIhQcLHHLkp6JG8Wbb9IZqN_NMPoKXF9cvP_6d9Pt6I6mRlfxYdrM5BvTReSxvnkcl17t6A-mQ8uyumQ7TRxRkev5wGb__51N7uclLcXV7PzcmLTGHdSCKG4rCCtVGOUgUbUaSqskUiVqHmMlNkq5mxkgZzyTEqoUQKAyjIrxAH7sXF1YWh1sO1A9o91fU920IgSQcoInW6glXcPI4VBL9tgqetMT24MGhWkmOVFihE9-YDeu9H3cQEteK6ylKMqIjXdUNa7EDw1euXbpfFrDVy_tKBfWtDbFqLg-NV2rJZUb_G3b4-A2gB_247Wn9jp-XVZvps_AyhAkXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069540297</pqid></control><display><type>article</type><title>Leveraging Curvature on N‐Doped Carbon Materials for Hydrogen Storage</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Rice, Peter S. ; Lee, Gabriel ; Schwartz, Brayden ; Autrey, Tom ; Ginovska, Bojana</creator><creatorcontrib>Rice, Peter S. ; Lee, Gabriel ; Schwartz, Brayden ; Autrey, Tom ; Ginovska, Bojana</creatorcontrib><description>Carbon sorbent materials have shown great promise for solid‐state hydrogen (H2) storage. Modification of these materials with nitrogen (N) dopants has been undertaken to develop materials that can store H2 at ambient temperatures. In this work density functional theory (DFT) calculations are used to systematically probe the influence of curvature on the stability and activity of undoped and N‐doped carbon materials toward H binding. Specifically, four models of carbon materials are used: graphene, [5,5] carbon nanotube, [5,5] D5d‐C120, and C60, to extract and correlate the thermodynamic properties of active sites with varying degrees of sp2 hybridization (curvature). From the calculations and analysis, it is found that graphitic N‐doping is thermodynamically favored on more pyramidal sites with increased curvature. In contrast, it is found that the hydrogen binding energy is weakly affected by curvature and is dominated by electronic effects induced by N‐doping. These findings highlight the importance of modulating the heteroatom doping configuration and the lattice topology when developing materials for H2 storage. Using four models of carbon materials: graphene, [5,5] carbon nanotube, [5,5] D5d‐C120, and C60, the thermodynamic properties of active sites with varying degrees of curvature and graphitic N‐doping are correlated. The DFT calculations show that graphitic N‐doping is thermodynamically favored with increased curvaturewhile the hydrogen binding energy is weakly affected by curvature and is dominated by N‐doping.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202310162</identifier><identifier>PMID: 38221703</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ambient temperature ; Carbon ; Carbon nanotubes ; Curvature ; Density functional theory ; DFT ; Doping ; Electronic properties ; Graphene ; heteroatom doping ; Hydrogen storage ; hydrogenation ; Nitrogen ; Sorbents ; Thermodynamic properties ; Topology</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (25), p.e2310162-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4002-733908b14b9fa9a1f3d443ca82eb3d07035cb003f8720e65881d28111955c33</citedby><cites>FETCH-LOGICAL-c4002-733908b14b9fa9a1f3d443ca82eb3d07035cb003f8720e65881d28111955c33</cites><orcidid>0000-0003-2946-3781 ; 0000-0002-7983-3667 ; 0000-0003-0165-8202 ; 0000000329463781 ; 0000000279833667 ; 0000000301658202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38221703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2282188$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rice, Peter S.</creatorcontrib><creatorcontrib>Lee, Gabriel</creatorcontrib><creatorcontrib>Schwartz, Brayden</creatorcontrib><creatorcontrib>Autrey, Tom</creatorcontrib><creatorcontrib>Ginovska, Bojana</creatorcontrib><title>Leveraging Curvature on N‐Doped Carbon Materials for Hydrogen Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Carbon sorbent materials have shown great promise for solid‐state hydrogen (H2) storage. Modification of these materials with nitrogen (N) dopants has been undertaken to develop materials that can store H2 at ambient temperatures. In this work density functional theory (DFT) calculations are used to systematically probe the influence of curvature on the stability and activity of undoped and N‐doped carbon materials toward H binding. Specifically, four models of carbon materials are used: graphene, [5,5] carbon nanotube, [5,5] D5d‐C120, and C60, to extract and correlate the thermodynamic properties of active sites with varying degrees of sp2 hybridization (curvature). From the calculations and analysis, it is found that graphitic N‐doping is thermodynamically favored on more pyramidal sites with increased curvature. In contrast, it is found that the hydrogen binding energy is weakly affected by curvature and is dominated by electronic effects induced by N‐doping. These findings highlight the importance of modulating the heteroatom doping configuration and the lattice topology when developing materials for H2 storage. Using four models of carbon materials: graphene, [5,5] carbon nanotube, [5,5] D5d‐C120, and C60, the thermodynamic properties of active sites with varying degrees of curvature and graphitic N‐doping are correlated. The DFT calculations show that graphitic N‐doping is thermodynamically favored with increased curvaturewhile the hydrogen binding energy is weakly affected by curvature and is dominated by N‐doping.</description><subject>Ambient temperature</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Curvature</subject><subject>Density functional theory</subject><subject>DFT</subject><subject>Doping</subject><subject>Electronic properties</subject><subject>Graphene</subject><subject>heteroatom doping</subject><subject>Hydrogen storage</subject><subject>hydrogenation</subject><subject>Nitrogen</subject><subject>Sorbents</subject><subject>Thermodynamic properties</subject><subject>Topology</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O3DAUha2qqPxuu0RR2bCZwfc6P_YSTVtACrAY9pbj3EyDMvFgJ1Sz4xH6jH0SjAYGiQ0rW77fOTrXh7HvwKfAOZ6FZddNkaMADjl-YXuQg5jkEtXX7R34LtsP4Z5zAZgW39iukIhQcLHHLkp6JG8Wbb9IZqN_NMPoKXF9cvP_6d9Pt6I6mRlfxYdrM5BvTReSxvnkcl17t6A-mQ8uyumQ7TRxRkev5wGb__51N7uclLcXV7PzcmLTGHdSCKG4rCCtVGOUgUbUaSqskUiVqHmMlNkq5mxkgZzyTEqoUQKAyjIrxAH7sXF1YWh1sO1A9o91fU920IgSQcoInW6glXcPI4VBL9tgqetMT24MGhWkmOVFihE9-YDeu9H3cQEteK6ylKMqIjXdUNa7EDw1euXbpfFrDVy_tKBfWtDbFqLg-NV2rJZUb_G3b4-A2gB_247Wn9jp-XVZvps_AyhAkXg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Rice, Peter S.</creator><creator>Lee, Gabriel</creator><creator>Schwartz, Brayden</creator><creator>Autrey, Tom</creator><creator>Ginovska, Bojana</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2946-3781</orcidid><orcidid>https://orcid.org/0000-0002-7983-3667</orcidid><orcidid>https://orcid.org/0000-0003-0165-8202</orcidid><orcidid>https://orcid.org/0000000329463781</orcidid><orcidid>https://orcid.org/0000000279833667</orcidid><orcidid>https://orcid.org/0000000301658202</orcidid></search><sort><creationdate>20240601</creationdate><title>Leveraging Curvature on N‐Doped Carbon Materials for Hydrogen Storage</title><author>Rice, Peter S. ; Lee, Gabriel ; Schwartz, Brayden ; Autrey, Tom ; Ginovska, Bojana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4002-733908b14b9fa9a1f3d443ca82eb3d07035cb003f8720e65881d28111955c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambient temperature</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Curvature</topic><topic>Density functional theory</topic><topic>DFT</topic><topic>Doping</topic><topic>Electronic properties</topic><topic>Graphene</topic><topic>heteroatom doping</topic><topic>Hydrogen storage</topic><topic>hydrogenation</topic><topic>Nitrogen</topic><topic>Sorbents</topic><topic>Thermodynamic properties</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rice, Peter S.</creatorcontrib><creatorcontrib>Lee, Gabriel</creatorcontrib><creatorcontrib>Schwartz, Brayden</creatorcontrib><creatorcontrib>Autrey, Tom</creatorcontrib><creatorcontrib>Ginovska, Bojana</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rice, Peter S.</au><au>Lee, Gabriel</au><au>Schwartz, Brayden</au><au>Autrey, Tom</au><au>Ginovska, Bojana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging Curvature on N‐Doped Carbon Materials for Hydrogen Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>20</volume><issue>25</issue><spage>e2310162</spage><epage>n/a</epage><pages>e2310162-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Carbon sorbent materials have shown great promise for solid‐state hydrogen (H2) storage. Modification of these materials with nitrogen (N) dopants has been undertaken to develop materials that can store H2 at ambient temperatures. In this work density functional theory (DFT) calculations are used to systematically probe the influence of curvature on the stability and activity of undoped and N‐doped carbon materials toward H binding. Specifically, four models of carbon materials are used: graphene, [5,5] carbon nanotube, [5,5] D5d‐C120, and C60, to extract and correlate the thermodynamic properties of active sites with varying degrees of sp2 hybridization (curvature). From the calculations and analysis, it is found that graphitic N‐doping is thermodynamically favored on more pyramidal sites with increased curvature. In contrast, it is found that the hydrogen binding energy is weakly affected by curvature and is dominated by electronic effects induced by N‐doping. These findings highlight the importance of modulating the heteroatom doping configuration and the lattice topology when developing materials for H2 storage. Using four models of carbon materials: graphene, [5,5] carbon nanotube, [5,5] D5d‐C120, and C60, the thermodynamic properties of active sites with varying degrees of curvature and graphitic N‐doping are correlated. The DFT calculations show that graphitic N‐doping is thermodynamically favored with increased curvaturewhile the hydrogen binding energy is weakly affected by curvature and is dominated by N‐doping.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38221703</pmid><doi>10.1002/smll.202310162</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2946-3781</orcidid><orcidid>https://orcid.org/0000-0002-7983-3667</orcidid><orcidid>https://orcid.org/0000-0003-0165-8202</orcidid><orcidid>https://orcid.org/0000000329463781</orcidid><orcidid>https://orcid.org/0000000279833667</orcidid><orcidid>https://orcid.org/0000000301658202</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (25), p.e2310162-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_osti_scitechconnect_2282188
source Wiley-Blackwell Read & Publish Collection
subjects Ambient temperature
Carbon
Carbon nanotubes
Curvature
Density functional theory
DFT
Doping
Electronic properties
Graphene
heteroatom doping
Hydrogen storage
hydrogenation
Nitrogen
Sorbents
Thermodynamic properties
Topology
title Leveraging Curvature on N‐Doped Carbon Materials for Hydrogen Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20Curvature%20on%20N%E2%80%90Doped%20Carbon%20Materials%20for%20Hydrogen%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Rice,%20Peter%20S.&rft.date=2024-06-01&rft.volume=20&rft.issue=25&rft.spage=e2310162&rft.epage=n/a&rft.pages=e2310162-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202310162&rft_dat=%3Cproquest_osti_%3E3069540297%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4002-733908b14b9fa9a1f3d443ca82eb3d07035cb003f8720e65881d28111955c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069540297&rft_id=info:pmid/38221703&rfr_iscdi=true