Loading…
Enabling portable demand flexibility control applications in virtual and real buildings
Control applications that facilitate Demand Flexibility (DF) are difficult to deploy at scale in existing buildings. The heterogeneity of systems and non-standard naming conventions for metadata describing data points in building automation systems often lead to ad-hoc and building-specific applicat...
Saved in:
Published in: | Journal of Building Engineering 2024-06, Vol.86, p.108645, Article 108645 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Control applications that facilitate Demand Flexibility (DF) are difficult to deploy at scale in existing buildings. The heterogeneity of systems and non-standard naming conventions for metadata describing data points in building automation systems often lead to ad-hoc and building-specific applications. In recent years, several researchers investigated semantic models to describe the meaning of building data. They suggest that these models can enhance the deployment of building applications, enabling data exchanges among heterogeneous sources and their portability across different buildings. However, the studies in question fail to explore these capabilities in the context of controls. This paper proposes a novel semantics-driven framework for developing and deploying portable DF control applications. The design of the framework leverages an iterative design science research methodology, evolving from evidence gathered through simulation and field demonstrations. The framework aims to decouple control applications from specific buildings and control platforms, enabling these control applications to be configured semi-automatically. This allows application developers and researchers to streamline the onboarding of new applications that could otherwise be time-consuming and resource-intensive. The framework has been validated for its capability to facilitate the deployment of control applications sharing the same codebase across diverse virtual and real buildings. The demonstration successfully tested two controls for load shifting and shedding in four virtual buildings using the Building Optimization Testing Framework (BOPTEST) and in one real building using the control platform VOLTTRON. Insights into the current limitations, benefits, and challenges of generalizable controls and semantic models are derived from the deployment efforts and outcomes to guide future research in this field.
•Introduces a semantics-driven framework for portable demand flexibility controls.•Proposes requirements for developing generalizable control applications.•Framework tested with virtual and real buildings using BOPTEST and VOLTTRON.•Successful demonstration of portability across heterogeneous building configurations.•Insights into limitations, benefits, and challenges are derived from the deployment. |
---|---|
ISSN: | 2352-7102 2352-7102 |
DOI: | 10.1016/j.jobe.2024.108645 |