Loading…

Contact manifolds and dissipation, classical and quantum

Motivated by a geometric decomposition of the vector field associated with the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation for finite-level open quantum systems, we propose a generalization of the recently introduced contact Hamiltonian systems for the description of dissipative-like dynam...

Full description

Saved in:
Bibliographic Details
Published in:Annals of physics 2018-11, Vol.398, p.159-179
Main Authors: Ciaglia, F.M., Cruz, H., Marmo, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53
cites cdi_FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53
container_end_page 179
container_issue
container_start_page 159
container_title Annals of physics
container_volume 398
creator Ciaglia, F.M.
Cruz, H.
Marmo, G.
description Motivated by a geometric decomposition of the vector field associated with the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation for finite-level open quantum systems, we propose a generalization of the recently introduced contact Hamiltonian systems for the description of dissipative-like dynamical systems in the context of (non-necessarily exact) contact manifolds. In particular, we show how this class of dynamical systems naturally emerges in the context of Lagrangian Mechanics and in the case of nonlinear evolutions on the space of pure states of a finite-level quantum system.
doi_str_mv 10.1016/j.aop.2018.09.012
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22848403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491618302574</els_id><sourcerecordid>S0003491618302574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Ad4KXm2dyUeb4EkWv2DBi4K3EJMUs3STtYmC_72t69nTzDDvPR4_Qs4RGgRsrzaNSbuGAsoGVANID8gCQbU1MPF6SBYAwGqusD0mJzlvABC5kAsiVykWY0u1NTH0aXC5MtFVLuQcdqaEFC8rO5jpsmb4fX18mlg-t6fkqDdD9md_c0le7m6fVw_1-un-cXWzri2jotSMOwVAewbQT1vH0HctlZIJabreuFYoLzr51vG2R-ykU6IzHKnxwinvBVuSi31uyiXobEPx9t2mGL0tmlLJJQc2qXCvsmPKefS93o1ha8ZvjaBnQHqjJ0B6BqRB6QnQ5Lnee_xU_yv4cU730XoXxjncpfCP-wdOgGyF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Contact manifolds and dissipation, classical and quantum</title><source>ScienceDirect Journals</source><creator>Ciaglia, F.M. ; Cruz, H. ; Marmo, G.</creator><creatorcontrib>Ciaglia, F.M. ; Cruz, H. ; Marmo, G.</creatorcontrib><description>Motivated by a geometric decomposition of the vector field associated with the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation for finite-level open quantum systems, we propose a generalization of the recently introduced contact Hamiltonian systems for the description of dissipative-like dynamical systems in the context of (non-necessarily exact) contact manifolds. In particular, we show how this class of dynamical systems naturally emerges in the context of Lagrangian Mechanics and in the case of nonlinear evolutions on the space of pure states of a finite-level quantum system.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2018.09.012</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Contact manifold ; Dissipation ; DYNAMICAL SYSTEMS ; General linear group ; GKLS equation ; Hamiltonian mechanics ; HAMILTONIANS ; LAGRANGIAN FUNCTION ; Lagrangian mechanics ; NONLINEAR PROBLEMS ; Nonlinear Schrödinger equation ; PURE STATES ; QUANTUM MECHANICS ; QUANTUM SYSTEMS ; VECTOR FIELDS</subject><ispartof>Annals of physics, 2018-11, Vol.398, p.159-179</ispartof><rights>2018 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53</citedby><cites>FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22848403$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ciaglia, F.M.</creatorcontrib><creatorcontrib>Cruz, H.</creatorcontrib><creatorcontrib>Marmo, G.</creatorcontrib><title>Contact manifolds and dissipation, classical and quantum</title><title>Annals of physics</title><description>Motivated by a geometric decomposition of the vector field associated with the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation for finite-level open quantum systems, we propose a generalization of the recently introduced contact Hamiltonian systems for the description of dissipative-like dynamical systems in the context of (non-necessarily exact) contact manifolds. In particular, we show how this class of dynamical systems naturally emerges in the context of Lagrangian Mechanics and in the case of nonlinear evolutions on the space of pure states of a finite-level quantum system.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Contact manifold</subject><subject>Dissipation</subject><subject>DYNAMICAL SYSTEMS</subject><subject>General linear group</subject><subject>GKLS equation</subject><subject>Hamiltonian mechanics</subject><subject>HAMILTONIANS</subject><subject>LAGRANGIAN FUNCTION</subject><subject>Lagrangian mechanics</subject><subject>NONLINEAR PROBLEMS</subject><subject>Nonlinear Schrödinger equation</subject><subject>PURE STATES</subject><subject>QUANTUM MECHANICS</subject><subject>QUANTUM SYSTEMS</subject><subject>VECTOR FIELDS</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Ad4KXm2dyUeb4EkWv2DBi4K3EJMUs3STtYmC_72t69nTzDDvPR4_Qs4RGgRsrzaNSbuGAsoGVANID8gCQbU1MPF6SBYAwGqusD0mJzlvABC5kAsiVykWY0u1NTH0aXC5MtFVLuQcdqaEFC8rO5jpsmb4fX18mlg-t6fkqDdD9md_c0le7m6fVw_1-un-cXWzri2jotSMOwVAewbQT1vH0HctlZIJabreuFYoLzr51vG2R-ykU6IzHKnxwinvBVuSi31uyiXobEPx9t2mGL0tmlLJJQc2qXCvsmPKefS93o1ha8ZvjaBnQHqjJ0B6BqRB6QnQ5Lnee_xU_yv4cU730XoXxjncpfCP-wdOgGyF</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Ciaglia, F.M.</creator><creator>Cruz, H.</creator><creator>Marmo, G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20181101</creationdate><title>Contact manifolds and dissipation, classical and quantum</title><author>Ciaglia, F.M. ; Cruz, H. ; Marmo, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Contact manifold</topic><topic>Dissipation</topic><topic>DYNAMICAL SYSTEMS</topic><topic>General linear group</topic><topic>GKLS equation</topic><topic>Hamiltonian mechanics</topic><topic>HAMILTONIANS</topic><topic>LAGRANGIAN FUNCTION</topic><topic>Lagrangian mechanics</topic><topic>NONLINEAR PROBLEMS</topic><topic>Nonlinear Schrödinger equation</topic><topic>PURE STATES</topic><topic>QUANTUM MECHANICS</topic><topic>QUANTUM SYSTEMS</topic><topic>VECTOR FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciaglia, F.M.</creatorcontrib><creatorcontrib>Cruz, H.</creatorcontrib><creatorcontrib>Marmo, G.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciaglia, F.M.</au><au>Cruz, H.</au><au>Marmo, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contact manifolds and dissipation, classical and quantum</atitle><jtitle>Annals of physics</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>398</volume><spage>159</spage><epage>179</epage><pages>159-179</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><abstract>Motivated by a geometric decomposition of the vector field associated with the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation for finite-level open quantum systems, we propose a generalization of the recently introduced contact Hamiltonian systems for the description of dissipative-like dynamical systems in the context of (non-necessarily exact) contact manifolds. In particular, we show how this class of dynamical systems naturally emerges in the context of Lagrangian Mechanics and in the case of nonlinear evolutions on the space of pure states of a finite-level quantum system.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2018.09.012</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2018-11, Vol.398, p.159-179
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_22848403
source ScienceDirect Journals
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Contact manifold
Dissipation
DYNAMICAL SYSTEMS
General linear group
GKLS equation
Hamiltonian mechanics
HAMILTONIANS
LAGRANGIAN FUNCTION
Lagrangian mechanics
NONLINEAR PROBLEMS
Nonlinear Schrödinger equation
PURE STATES
QUANTUM MECHANICS
QUANTUM SYSTEMS
VECTOR FIELDS
title Contact manifolds and dissipation, classical and quantum
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contact%20manifolds%20and%20dissipation,%20classical%20and%20quantum&rft.jtitle=Annals%20of%20physics&rft.au=Ciaglia,%20F.M.&rft.date=2018-11-01&rft.volume=398&rft.spage=159&rft.epage=179&rft.pages=159-179&rft.issn=0003-4916&rft.eissn=1096-035X&rft_id=info:doi/10.1016/j.aop.2018.09.012&rft_dat=%3Celsevier_osti_%3ES0003491618302574%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true