Loading…
Contact manifolds and dissipation, classical and quantum
Motivated by a geometric decomposition of the vector field associated with the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation for finite-level open quantum systems, we propose a generalization of the recently introduced contact Hamiltonian systems for the description of dissipative-like dynam...
Saved in:
Published in: | Annals of physics 2018-11, Vol.398, p.159-179 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53 |
container_end_page | 179 |
container_issue | |
container_start_page | 159 |
container_title | Annals of physics |
container_volume | 398 |
creator | Ciaglia, F.M. Cruz, H. Marmo, G. |
description | Motivated by a geometric decomposition of the vector field associated with the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation for finite-level open quantum systems, we propose a generalization of the recently introduced contact Hamiltonian systems for the description of dissipative-like dynamical systems in the context of (non-necessarily exact) contact manifolds. In particular, we show how this class of dynamical systems naturally emerges in the context of Lagrangian Mechanics and in the case of nonlinear evolutions on the space of pure states of a finite-level quantum system. |
doi_str_mv | 10.1016/j.aop.2018.09.012 |
format | article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22848403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491618302574</els_id><sourcerecordid>S0003491618302574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Ad4KXm2dyUeb4EkWv2DBi4K3EJMUs3STtYmC_72t69nTzDDvPR4_Qs4RGgRsrzaNSbuGAsoGVANID8gCQbU1MPF6SBYAwGqusD0mJzlvABC5kAsiVykWY0u1NTH0aXC5MtFVLuQcdqaEFC8rO5jpsmb4fX18mlg-t6fkqDdD9md_c0le7m6fVw_1-un-cXWzri2jotSMOwVAewbQT1vH0HctlZIJabreuFYoLzr51vG2R-ykU6IzHKnxwinvBVuSi31uyiXobEPx9t2mGL0tmlLJJQc2qXCvsmPKefS93o1ha8ZvjaBnQHqjJ0B6BqRB6QnQ5Lnee_xU_yv4cU730XoXxjncpfCP-wdOgGyF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Contact manifolds and dissipation, classical and quantum</title><source>ScienceDirect Journals</source><creator>Ciaglia, F.M. ; Cruz, H. ; Marmo, G.</creator><creatorcontrib>Ciaglia, F.M. ; Cruz, H. ; Marmo, G.</creatorcontrib><description>Motivated by a geometric decomposition of the vector field associated with the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation for finite-level open quantum systems, we propose a generalization of the recently introduced contact Hamiltonian systems for the description of dissipative-like dynamical systems in the context of (non-necessarily exact) contact manifolds. In particular, we show how this class of dynamical systems naturally emerges in the context of Lagrangian Mechanics and in the case of nonlinear evolutions on the space of pure states of a finite-level quantum system.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2018.09.012</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Contact manifold ; Dissipation ; DYNAMICAL SYSTEMS ; General linear group ; GKLS equation ; Hamiltonian mechanics ; HAMILTONIANS ; LAGRANGIAN FUNCTION ; Lagrangian mechanics ; NONLINEAR PROBLEMS ; Nonlinear Schrödinger equation ; PURE STATES ; QUANTUM MECHANICS ; QUANTUM SYSTEMS ; VECTOR FIELDS</subject><ispartof>Annals of physics, 2018-11, Vol.398, p.159-179</ispartof><rights>2018 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53</citedby><cites>FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22848403$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ciaglia, F.M.</creatorcontrib><creatorcontrib>Cruz, H.</creatorcontrib><creatorcontrib>Marmo, G.</creatorcontrib><title>Contact manifolds and dissipation, classical and quantum</title><title>Annals of physics</title><description>Motivated by a geometric decomposition of the vector field associated with the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation for finite-level open quantum systems, we propose a generalization of the recently introduced contact Hamiltonian systems for the description of dissipative-like dynamical systems in the context of (non-necessarily exact) contact manifolds. In particular, we show how this class of dynamical systems naturally emerges in the context of Lagrangian Mechanics and in the case of nonlinear evolutions on the space of pure states of a finite-level quantum system.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Contact manifold</subject><subject>Dissipation</subject><subject>DYNAMICAL SYSTEMS</subject><subject>General linear group</subject><subject>GKLS equation</subject><subject>Hamiltonian mechanics</subject><subject>HAMILTONIANS</subject><subject>LAGRANGIAN FUNCTION</subject><subject>Lagrangian mechanics</subject><subject>NONLINEAR PROBLEMS</subject><subject>Nonlinear Schrödinger equation</subject><subject>PURE STATES</subject><subject>QUANTUM MECHANICS</subject><subject>QUANTUM SYSTEMS</subject><subject>VECTOR FIELDS</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Ad4KXm2dyUeb4EkWv2DBi4K3EJMUs3STtYmC_72t69nTzDDvPR4_Qs4RGgRsrzaNSbuGAsoGVANID8gCQbU1MPF6SBYAwGqusD0mJzlvABC5kAsiVykWY0u1NTH0aXC5MtFVLuQcdqaEFC8rO5jpsmb4fX18mlg-t6fkqDdD9md_c0le7m6fVw_1-un-cXWzri2jotSMOwVAewbQT1vH0HctlZIJabreuFYoLzr51vG2R-ykU6IzHKnxwinvBVuSi31uyiXobEPx9t2mGL0tmlLJJQc2qXCvsmPKefS93o1ha8ZvjaBnQHqjJ0B6BqRB6QnQ5Lnee_xU_yv4cU730XoXxjncpfCP-wdOgGyF</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Ciaglia, F.M.</creator><creator>Cruz, H.</creator><creator>Marmo, G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20181101</creationdate><title>Contact manifolds and dissipation, classical and quantum</title><author>Ciaglia, F.M. ; Cruz, H. ; Marmo, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Contact manifold</topic><topic>Dissipation</topic><topic>DYNAMICAL SYSTEMS</topic><topic>General linear group</topic><topic>GKLS equation</topic><topic>Hamiltonian mechanics</topic><topic>HAMILTONIANS</topic><topic>LAGRANGIAN FUNCTION</topic><topic>Lagrangian mechanics</topic><topic>NONLINEAR PROBLEMS</topic><topic>Nonlinear Schrödinger equation</topic><topic>PURE STATES</topic><topic>QUANTUM MECHANICS</topic><topic>QUANTUM SYSTEMS</topic><topic>VECTOR FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciaglia, F.M.</creatorcontrib><creatorcontrib>Cruz, H.</creatorcontrib><creatorcontrib>Marmo, G.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciaglia, F.M.</au><au>Cruz, H.</au><au>Marmo, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contact manifolds and dissipation, classical and quantum</atitle><jtitle>Annals of physics</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>398</volume><spage>159</spage><epage>179</epage><pages>159-179</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><abstract>Motivated by a geometric decomposition of the vector field associated with the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation for finite-level open quantum systems, we propose a generalization of the recently introduced contact Hamiltonian systems for the description of dissipative-like dynamical systems in the context of (non-necessarily exact) contact manifolds. In particular, we show how this class of dynamical systems naturally emerges in the context of Lagrangian Mechanics and in the case of nonlinear evolutions on the space of pure states of a finite-level quantum system.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2018.09.012</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4916 |
ispartof | Annals of physics, 2018-11, Vol.398, p.159-179 |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_osti_scitechconnect_22848403 |
source | ScienceDirect Journals |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Contact manifold Dissipation DYNAMICAL SYSTEMS General linear group GKLS equation Hamiltonian mechanics HAMILTONIANS LAGRANGIAN FUNCTION Lagrangian mechanics NONLINEAR PROBLEMS Nonlinear Schrödinger equation PURE STATES QUANTUM MECHANICS QUANTUM SYSTEMS VECTOR FIELDS |
title | Contact manifolds and dissipation, classical and quantum |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contact%20manifolds%20and%20dissipation,%20classical%20and%20quantum&rft.jtitle=Annals%20of%20physics&rft.au=Ciaglia,%20F.M.&rft.date=2018-11-01&rft.volume=398&rft.spage=159&rft.epage=179&rft.pages=159-179&rft.issn=0003-4916&rft.eissn=1096-035X&rft_id=info:doi/10.1016/j.aop.2018.09.012&rft_dat=%3Celsevier_osti_%3ES0003491618302574%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-34d9002f300fd90731e76288358a7fad659e578b746f1178d957a412ae5d9ee53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |