Loading…

ALMA OBSERVATIONS OF THE DEBRIS DISK OF SOLAR ANALOG τ CETI

ABSTRACT We present 1.3 mm observations of the Sun-like star τ Ceti with the Atacama Large Millimeter/submillimeter Array that probe angular scales of (4 au). This first interferometric image of the τ Ceti system, which hosts both a debris disk and a possible multiplanet system, shows emission from...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2016-09, Vol.828 (2), p.113
Main Authors: MacGregor, Meredith A., Lawler, Samantha M., Wilner, David J., Matthews, Brenda C., Kennedy, Grant M., Booth, Mark, Francesco, James Di
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT We present 1.3 mm observations of the Sun-like star τ Ceti with the Atacama Large Millimeter/submillimeter Array that probe angular scales of (4 au). This first interferometric image of the τ Ceti system, which hosts both a debris disk and a possible multiplanet system, shows emission from a nearly face-on belt of cold dust with a position angle of surrounding an unresolved central source at the stellar position. To characterize this emission structure, we fit parametric models to the millimeter visibilities. The resulting best-fit model yields an inner belt edge of au, consistent with inferences from lower resolution, far-infrared Herschel observations. While the limited data at sufficiently short baselines preclude us from placing stronger constraints on the belt properties and its relation to the proposed five planet system, the observations do provide a strong lower limit on the fractional width of the belt, with 99% confidence. This fractional width is more similar to broad disks such as HD 107146 than narrow belts such as the Kuiper Belt and Fomalhaut. The unresolved central source has a higher flux density than the predicted flux of the stellar photosphere at 1.3 mm. Given previous measurements of an excess by a factor of ∼2 at 8.7 mm, this emission is likely due to a hot stellar chromosphere.
ISSN:0004-637X
1538-4357
DOI:10.3847/0004-637X/828/2/113