Loading…
PREDICTING THE REDSHIFT 2 H α LUMINOSITY FUNCTION USING [O iii] EMISSION LINE GALAXIES
Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure baryonic acoustic oscillations in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use...
Saved in:
Published in: | The Astrophysical journal 2015-10, Vol.811 (2), p.141 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3 |
container_end_page | |
container_issue | 2 |
container_start_page | 141 |
container_title | The Astrophysical journal |
container_volume | 811 |
creator | Mehta, Vihang Scarlata, Claudia Colbert, James W. Dai, Y. S. Dressler, Alan Henry, Alaina Malkan, Matt Rafelski, Marc Siana, Brian Teplitz, Harry I. Bagley, Micaela Beck, Melanie Ross, Nathaniel R. Rutkowski, Michael Wang, Yun |
description | Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure baryonic acoustic oscillations in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the Wide Field Camera 3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of Hα emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8–1.65 μm wavelength range and allowing the detection of Hα emitters up to z ∼ 1.5 and [O iii] emitters to z ∼ 2.3. We derive the Hα–[O iii] bivariate line luminosity function (LLF) for WISP galaxies at z ∼ 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurements and we demonstrate how it can be used to derive the Hα luminosity function by exclusively fitting [O iii] data. Using the z∼2 [O iii] LLF and assuming that the relation between Hα and [O iii] luminosity does not change significantly over the redshift range, we predict the Hα number counts at z∼2—the upper end of the redshift range of interest for future surveys. For the redshift range 0.7 |
doi_str_mv | 10.1088/0004-637X/811/2/141 |
format | article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22882516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_0004_637X_811_2_141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3</originalsourceid><addsrcrecordid>eNpNkE1OwzAQRi0EEqVwAjaWWId4bMdxl1VJG0tpgkgiihCy8uOIIGhRnA3H4iKcCUdlwWZmvtGbWTyEroHcApHSJ4RwT7Bw50sAn_rA4QTNIGDS4ywIT__N5-jC2rfpgC4WM_R4_xDdqVWh0g0u4gi7lMdqXWCKY_zzjZNyq9IsV8UTXpep47IUl_lEP2e47_sXHG1Vnk_rRKUR3iyT5U5F-SU666p3a67--hyV66hYxV6SbdRqmXgNDcPRE0YayQPetgDQ1UQuJOMBBKaWIETFRRsa2rWUhZyIqq5c4QTA8ZWpO27YHN0c_x7s2Gvb9KNpXpvDfm-aUVMqJQ1AOIodqWY4WDuYTn8O_Uc1fGkgejKoJyF6MqidQU21M8h-AVblXJE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PREDICTING THE REDSHIFT 2 H α LUMINOSITY FUNCTION USING [O iii] EMISSION LINE GALAXIES</title><source>EZB Electronic Journals Library</source><creator>Mehta, Vihang ; Scarlata, Claudia ; Colbert, James W. ; Dai, Y. S. ; Dressler, Alan ; Henry, Alaina ; Malkan, Matt ; Rafelski, Marc ; Siana, Brian ; Teplitz, Harry I. ; Bagley, Micaela ; Beck, Melanie ; Ross, Nathaniel R. ; Rutkowski, Michael ; Wang, Yun</creator><creatorcontrib>Mehta, Vihang ; Scarlata, Claudia ; Colbert, James W. ; Dai, Y. S. ; Dressler, Alan ; Henry, Alaina ; Malkan, Matt ; Rafelski, Marc ; Siana, Brian ; Teplitz, Harry I. ; Bagley, Micaela ; Beck, Melanie ; Ross, Nathaniel R. ; Rutkowski, Michael ; Wang, Yun</creatorcontrib><description>Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure baryonic acoustic oscillations in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the Wide Field Camera 3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of Hα emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8–1.65 μm wavelength range and allowing the detection of Hα emitters up to z ∼ 1.5 and [O iii] emitters to z ∼ 2.3. We derive the Hα–[O iii] bivariate line luminosity function (LLF) for WISP galaxies at z ∼ 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurements and we demonstrate how it can be used to derive the Hα luminosity function by exclusively fitting [O iii] data. Using the z∼2 [O iii] LLF and assuming that the relation between Hα and [O iii] luminosity does not change significantly over the redshift range, we predict the Hα number counts at z∼2—the upper end of the redshift range of interest for future surveys. For the redshift range 0.7<z<2, we expect ∼3000 galaxies deg{sup −2} for a flux limit of 3 × 10{sup −16} erg s{sup −1} cm{sup −2} (the proposed depth of the Euclid galaxy redshift survey) and ∼20,000 galaxies deg{sup −2} for a flux limit of ∼10{sup −16} erg s{sup −1} cm{sup −2} (the baseline depth of the WFIRST galaxy redshift survey).</description><identifier>ISSN: 1538-4357</identifier><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/811/2/141</identifier><language>eng</language><publisher>United Kingdom</publisher><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; BALMER LINES ; BARYONS ; DETECTION ; EMISSION ; FUNCTIONS ; GALACTIC EVOLUTION ; GALAXIES ; LUMINOSITY ; MASS ; MAXIMUM-LIKELIHOOD FIT ; NONLUMINOUS MATTER ; OSCILLATIONS ; RED SHIFT ; SPACE ; SPECTROSCOPY ; STATISTICS ; TELESCOPES ; WAVELENGTHS</subject><ispartof>The Astrophysical journal, 2015-10, Vol.811 (2), p.141</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3</citedby><cites>FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3</cites><orcidid>0000-0001-7166-6035 ; 0000-0002-4935-9511 ; 0000-0003-3527-1428 ; 0000-0002-6317-0037 ; 0000-0002-9136-8876 ; 0000-0002-9946-4731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22882516$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehta, Vihang</creatorcontrib><creatorcontrib>Scarlata, Claudia</creatorcontrib><creatorcontrib>Colbert, James W.</creatorcontrib><creatorcontrib>Dai, Y. S.</creatorcontrib><creatorcontrib>Dressler, Alan</creatorcontrib><creatorcontrib>Henry, Alaina</creatorcontrib><creatorcontrib>Malkan, Matt</creatorcontrib><creatorcontrib>Rafelski, Marc</creatorcontrib><creatorcontrib>Siana, Brian</creatorcontrib><creatorcontrib>Teplitz, Harry I.</creatorcontrib><creatorcontrib>Bagley, Micaela</creatorcontrib><creatorcontrib>Beck, Melanie</creatorcontrib><creatorcontrib>Ross, Nathaniel R.</creatorcontrib><creatorcontrib>Rutkowski, Michael</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><title>PREDICTING THE REDSHIFT 2 H α LUMINOSITY FUNCTION USING [O iii] EMISSION LINE GALAXIES</title><title>The Astrophysical journal</title><description>Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure baryonic acoustic oscillations in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the Wide Field Camera 3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of Hα emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8–1.65 μm wavelength range and allowing the detection of Hα emitters up to z ∼ 1.5 and [O iii] emitters to z ∼ 2.3. We derive the Hα–[O iii] bivariate line luminosity function (LLF) for WISP galaxies at z ∼ 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurements and we demonstrate how it can be used to derive the Hα luminosity function by exclusively fitting [O iii] data. Using the z∼2 [O iii] LLF and assuming that the relation between Hα and [O iii] luminosity does not change significantly over the redshift range, we predict the Hα number counts at z∼2—the upper end of the redshift range of interest for future surveys. For the redshift range 0.7<z<2, we expect ∼3000 galaxies deg{sup −2} for a flux limit of 3 × 10{sup −16} erg s{sup −1} cm{sup −2} (the proposed depth of the Euclid galaxy redshift survey) and ∼20,000 galaxies deg{sup −2} for a flux limit of ∼10{sup −16} erg s{sup −1} cm{sup −2} (the baseline depth of the WFIRST galaxy redshift survey).</description><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>BALMER LINES</subject><subject>BARYONS</subject><subject>DETECTION</subject><subject>EMISSION</subject><subject>FUNCTIONS</subject><subject>GALACTIC EVOLUTION</subject><subject>GALAXIES</subject><subject>LUMINOSITY</subject><subject>MASS</subject><subject>MAXIMUM-LIKELIHOOD FIT</subject><subject>NONLUMINOUS MATTER</subject><subject>OSCILLATIONS</subject><subject>RED SHIFT</subject><subject>SPACE</subject><subject>SPECTROSCOPY</subject><subject>STATISTICS</subject><subject>TELESCOPES</subject><subject>WAVELENGTHS</subject><issn>1538-4357</issn><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAQRi0EEqVwAjaWWId4bMdxl1VJG0tpgkgiihCy8uOIIGhRnA3H4iKcCUdlwWZmvtGbWTyEroHcApHSJ4RwT7Bw50sAn_rA4QTNIGDS4ywIT__N5-jC2rfpgC4WM_R4_xDdqVWh0g0u4gi7lMdqXWCKY_zzjZNyq9IsV8UTXpep47IUl_lEP2e47_sXHG1Vnk_rRKUR3iyT5U5F-SU666p3a67--hyV66hYxV6SbdRqmXgNDcPRE0YayQPetgDQ1UQuJOMBBKaWIETFRRsa2rWUhZyIqq5c4QTA8ZWpO27YHN0c_x7s2Gvb9KNpXpvDfm-aUVMqJQ1AOIodqWY4WDuYTn8O_Uc1fGkgejKoJyF6MqidQU21M8h-AVblXJE</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Mehta, Vihang</creator><creator>Scarlata, Claudia</creator><creator>Colbert, James W.</creator><creator>Dai, Y. S.</creator><creator>Dressler, Alan</creator><creator>Henry, Alaina</creator><creator>Malkan, Matt</creator><creator>Rafelski, Marc</creator><creator>Siana, Brian</creator><creator>Teplitz, Harry I.</creator><creator>Bagley, Micaela</creator><creator>Beck, Melanie</creator><creator>Ross, Nathaniel R.</creator><creator>Rutkowski, Michael</creator><creator>Wang, Yun</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7166-6035</orcidid><orcidid>https://orcid.org/0000-0002-4935-9511</orcidid><orcidid>https://orcid.org/0000-0003-3527-1428</orcidid><orcidid>https://orcid.org/0000-0002-6317-0037</orcidid><orcidid>https://orcid.org/0000-0002-9136-8876</orcidid><orcidid>https://orcid.org/0000-0002-9946-4731</orcidid></search><sort><creationdate>20151001</creationdate><title>PREDICTING THE REDSHIFT 2 H α LUMINOSITY FUNCTION USING [O iii] EMISSION LINE GALAXIES</title><author>Mehta, Vihang ; Scarlata, Claudia ; Colbert, James W. ; Dai, Y. S. ; Dressler, Alan ; Henry, Alaina ; Malkan, Matt ; Rafelski, Marc ; Siana, Brian ; Teplitz, Harry I. ; Bagley, Micaela ; Beck, Melanie ; Ross, Nathaniel R. ; Rutkowski, Michael ; Wang, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>BALMER LINES</topic><topic>BARYONS</topic><topic>DETECTION</topic><topic>EMISSION</topic><topic>FUNCTIONS</topic><topic>GALACTIC EVOLUTION</topic><topic>GALAXIES</topic><topic>LUMINOSITY</topic><topic>MASS</topic><topic>MAXIMUM-LIKELIHOOD FIT</topic><topic>NONLUMINOUS MATTER</topic><topic>OSCILLATIONS</topic><topic>RED SHIFT</topic><topic>SPACE</topic><topic>SPECTROSCOPY</topic><topic>STATISTICS</topic><topic>TELESCOPES</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehta, Vihang</creatorcontrib><creatorcontrib>Scarlata, Claudia</creatorcontrib><creatorcontrib>Colbert, James W.</creatorcontrib><creatorcontrib>Dai, Y. S.</creatorcontrib><creatorcontrib>Dressler, Alan</creatorcontrib><creatorcontrib>Henry, Alaina</creatorcontrib><creatorcontrib>Malkan, Matt</creatorcontrib><creatorcontrib>Rafelski, Marc</creatorcontrib><creatorcontrib>Siana, Brian</creatorcontrib><creatorcontrib>Teplitz, Harry I.</creatorcontrib><creatorcontrib>Bagley, Micaela</creatorcontrib><creatorcontrib>Beck, Melanie</creatorcontrib><creatorcontrib>Ross, Nathaniel R.</creatorcontrib><creatorcontrib>Rutkowski, Michael</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehta, Vihang</au><au>Scarlata, Claudia</au><au>Colbert, James W.</au><au>Dai, Y. S.</au><au>Dressler, Alan</au><au>Henry, Alaina</au><au>Malkan, Matt</au><au>Rafelski, Marc</au><au>Siana, Brian</au><au>Teplitz, Harry I.</au><au>Bagley, Micaela</au><au>Beck, Melanie</au><au>Ross, Nathaniel R.</au><au>Rutkowski, Michael</au><au>Wang, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PREDICTING THE REDSHIFT 2 H α LUMINOSITY FUNCTION USING [O iii] EMISSION LINE GALAXIES</atitle><jtitle>The Astrophysical journal</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>811</volume><issue>2</issue><spage>141</spage><pages>141-</pages><issn>1538-4357</issn><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure baryonic acoustic oscillations in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the Wide Field Camera 3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of Hα emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8–1.65 μm wavelength range and allowing the detection of Hα emitters up to z ∼ 1.5 and [O iii] emitters to z ∼ 2.3. We derive the Hα–[O iii] bivariate line luminosity function (LLF) for WISP galaxies at z ∼ 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurements and we demonstrate how it can be used to derive the Hα luminosity function by exclusively fitting [O iii] data. Using the z∼2 [O iii] LLF and assuming that the relation between Hα and [O iii] luminosity does not change significantly over the redshift range, we predict the Hα number counts at z∼2—the upper end of the redshift range of interest for future surveys. For the redshift range 0.7<z<2, we expect ∼3000 galaxies deg{sup −2} for a flux limit of 3 × 10{sup −16} erg s{sup −1} cm{sup −2} (the proposed depth of the Euclid galaxy redshift survey) and ∼20,000 galaxies deg{sup −2} for a flux limit of ∼10{sup −16} erg s{sup −1} cm{sup −2} (the baseline depth of the WFIRST galaxy redshift survey).</abstract><cop>United Kingdom</cop><doi>10.1088/0004-637X/811/2/141</doi><orcidid>https://orcid.org/0000-0001-7166-6035</orcidid><orcidid>https://orcid.org/0000-0002-4935-9511</orcidid><orcidid>https://orcid.org/0000-0003-3527-1428</orcidid><orcidid>https://orcid.org/0000-0002-6317-0037</orcidid><orcidid>https://orcid.org/0000-0002-9136-8876</orcidid><orcidid>https://orcid.org/0000-0002-9946-4731</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1538-4357 |
ispartof | The Astrophysical journal, 2015-10, Vol.811 (2), p.141 |
issn | 1538-4357 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22882516 |
source | EZB Electronic Journals Library |
subjects | ASTROPHYSICS, COSMOLOGY AND ASTRONOMY BALMER LINES BARYONS DETECTION EMISSION FUNCTIONS GALACTIC EVOLUTION GALAXIES LUMINOSITY MASS MAXIMUM-LIKELIHOOD FIT NONLUMINOUS MATTER OSCILLATIONS RED SHIFT SPACE SPECTROSCOPY STATISTICS TELESCOPES WAVELENGTHS |
title | PREDICTING THE REDSHIFT 2 H α LUMINOSITY FUNCTION USING [O iii] EMISSION LINE GALAXIES |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PREDICTING%20THE%20REDSHIFT%202%20H%20%CE%B1%20LUMINOSITY%20FUNCTION%20USING%20%5BO%20iii%5D%20EMISSION%20LINE%20GALAXIES&rft.jtitle=The%20Astrophysical%20journal&rft.au=Mehta,%20Vihang&rft.date=2015-10-01&rft.volume=811&rft.issue=2&rft.spage=141&rft.pages=141-&rft.issn=1538-4357&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/811/2/141&rft_dat=%3Ccrossref_osti_%3E10_1088_0004_637X_811_2_141%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |