Loading…

PREDICTING THE REDSHIFT 2 H α LUMINOSITY FUNCTION USING [O iii] EMISSION LINE GALAXIES

Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure baryonic acoustic oscillations in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2015-10, Vol.811 (2), p.141
Main Authors: Mehta, Vihang, Scarlata, Claudia, Colbert, James W., Dai, Y. S., Dressler, Alan, Henry, Alaina, Malkan, Matt, Rafelski, Marc, Siana, Brian, Teplitz, Harry I., Bagley, Micaela, Beck, Melanie, Ross, Nathaniel R., Rutkowski, Michael, Wang, Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3
cites cdi_FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3
container_end_page
container_issue 2
container_start_page 141
container_title The Astrophysical journal
container_volume 811
creator Mehta, Vihang
Scarlata, Claudia
Colbert, James W.
Dai, Y. S.
Dressler, Alan
Henry, Alaina
Malkan, Matt
Rafelski, Marc
Siana, Brian
Teplitz, Harry I.
Bagley, Micaela
Beck, Melanie
Ross, Nathaniel R.
Rutkowski, Michael
Wang, Yun
description Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure baryonic acoustic oscillations in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the Wide Field Camera 3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of Hα emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8–1.65 μm wavelength range and allowing the detection of Hα emitters up to z ∼ 1.5 and [O iii] emitters to z ∼ 2.3. We derive the Hα–[O iii] bivariate line luminosity function (LLF) for WISP galaxies at z ∼ 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurements and we demonstrate how it can be used to derive the Hα luminosity function by exclusively fitting [O iii] data. Using the z∼2 [O iii] LLF and assuming that the relation between Hα and [O iii] luminosity does not change significantly over the redshift range, we predict the Hα number counts at z∼2—the upper end of the redshift range of interest for future surveys. For the redshift range 0.7
doi_str_mv 10.1088/0004-637X/811/2/141
format article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22882516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_0004_637X_811_2_141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3</originalsourceid><addsrcrecordid>eNpNkE1OwzAQRi0EEqVwAjaWWId4bMdxl1VJG0tpgkgiihCy8uOIIGhRnA3H4iKcCUdlwWZmvtGbWTyEroHcApHSJ4RwT7Bw50sAn_rA4QTNIGDS4ywIT__N5-jC2rfpgC4WM_R4_xDdqVWh0g0u4gi7lMdqXWCKY_zzjZNyq9IsV8UTXpep47IUl_lEP2e47_sXHG1Vnk_rRKUR3iyT5U5F-SU666p3a67--hyV66hYxV6SbdRqmXgNDcPRE0YayQPetgDQ1UQuJOMBBKaWIETFRRsa2rWUhZyIqq5c4QTA8ZWpO27YHN0c_x7s2Gvb9KNpXpvDfm-aUVMqJQ1AOIodqWY4WDuYTn8O_Uc1fGkgejKoJyF6MqidQU21M8h-AVblXJE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PREDICTING THE REDSHIFT 2 H α LUMINOSITY FUNCTION USING [O iii] EMISSION LINE GALAXIES</title><source>EZB Electronic Journals Library</source><creator>Mehta, Vihang ; Scarlata, Claudia ; Colbert, James W. ; Dai, Y. S. ; Dressler, Alan ; Henry, Alaina ; Malkan, Matt ; Rafelski, Marc ; Siana, Brian ; Teplitz, Harry I. ; Bagley, Micaela ; Beck, Melanie ; Ross, Nathaniel R. ; Rutkowski, Michael ; Wang, Yun</creator><creatorcontrib>Mehta, Vihang ; Scarlata, Claudia ; Colbert, James W. ; Dai, Y. S. ; Dressler, Alan ; Henry, Alaina ; Malkan, Matt ; Rafelski, Marc ; Siana, Brian ; Teplitz, Harry I. ; Bagley, Micaela ; Beck, Melanie ; Ross, Nathaniel R. ; Rutkowski, Michael ; Wang, Yun</creatorcontrib><description>Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure baryonic acoustic oscillations in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the Wide Field Camera 3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of Hα emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8–1.65 μm wavelength range and allowing the detection of Hα emitters up to z ∼ 1.5 and [O iii] emitters to z ∼ 2.3. We derive the Hα–[O iii] bivariate line luminosity function (LLF) for WISP galaxies at z ∼ 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurements and we demonstrate how it can be used to derive the Hα luminosity function by exclusively fitting [O iii] data. Using the z∼2 [O iii] LLF and assuming that the relation between Hα and [O iii] luminosity does not change significantly over the redshift range, we predict the Hα number counts at z∼2—the upper end of the redshift range of interest for future surveys. For the redshift range 0.7&lt;z&lt;2, we expect ∼3000 galaxies deg{sup −2} for a flux limit of 3 × 10{sup −16} erg s{sup −1} cm{sup −2} (the proposed depth of the Euclid galaxy redshift survey) and ∼20,000 galaxies deg{sup −2} for a flux limit of ∼10{sup −16} erg s{sup −1} cm{sup −2} (the baseline depth of the WFIRST galaxy redshift survey).</description><identifier>ISSN: 1538-4357</identifier><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/811/2/141</identifier><language>eng</language><publisher>United Kingdom</publisher><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; BALMER LINES ; BARYONS ; DETECTION ; EMISSION ; FUNCTIONS ; GALACTIC EVOLUTION ; GALAXIES ; LUMINOSITY ; MASS ; MAXIMUM-LIKELIHOOD FIT ; NONLUMINOUS MATTER ; OSCILLATIONS ; RED SHIFT ; SPACE ; SPECTROSCOPY ; STATISTICS ; TELESCOPES ; WAVELENGTHS</subject><ispartof>The Astrophysical journal, 2015-10, Vol.811 (2), p.141</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3</citedby><cites>FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3</cites><orcidid>0000-0001-7166-6035 ; 0000-0002-4935-9511 ; 0000-0003-3527-1428 ; 0000-0002-6317-0037 ; 0000-0002-9136-8876 ; 0000-0002-9946-4731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22882516$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehta, Vihang</creatorcontrib><creatorcontrib>Scarlata, Claudia</creatorcontrib><creatorcontrib>Colbert, James W.</creatorcontrib><creatorcontrib>Dai, Y. S.</creatorcontrib><creatorcontrib>Dressler, Alan</creatorcontrib><creatorcontrib>Henry, Alaina</creatorcontrib><creatorcontrib>Malkan, Matt</creatorcontrib><creatorcontrib>Rafelski, Marc</creatorcontrib><creatorcontrib>Siana, Brian</creatorcontrib><creatorcontrib>Teplitz, Harry I.</creatorcontrib><creatorcontrib>Bagley, Micaela</creatorcontrib><creatorcontrib>Beck, Melanie</creatorcontrib><creatorcontrib>Ross, Nathaniel R.</creatorcontrib><creatorcontrib>Rutkowski, Michael</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><title>PREDICTING THE REDSHIFT 2 H α LUMINOSITY FUNCTION USING [O iii] EMISSION LINE GALAXIES</title><title>The Astrophysical journal</title><description>Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure baryonic acoustic oscillations in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the Wide Field Camera 3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of Hα emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8–1.65 μm wavelength range and allowing the detection of Hα emitters up to z ∼ 1.5 and [O iii] emitters to z ∼ 2.3. We derive the Hα–[O iii] bivariate line luminosity function (LLF) for WISP galaxies at z ∼ 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurements and we demonstrate how it can be used to derive the Hα luminosity function by exclusively fitting [O iii] data. Using the z∼2 [O iii] LLF and assuming that the relation between Hα and [O iii] luminosity does not change significantly over the redshift range, we predict the Hα number counts at z∼2—the upper end of the redshift range of interest for future surveys. For the redshift range 0.7&lt;z&lt;2, we expect ∼3000 galaxies deg{sup −2} for a flux limit of 3 × 10{sup −16} erg s{sup −1} cm{sup −2} (the proposed depth of the Euclid galaxy redshift survey) and ∼20,000 galaxies deg{sup −2} for a flux limit of ∼10{sup −16} erg s{sup −1} cm{sup −2} (the baseline depth of the WFIRST galaxy redshift survey).</description><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>BALMER LINES</subject><subject>BARYONS</subject><subject>DETECTION</subject><subject>EMISSION</subject><subject>FUNCTIONS</subject><subject>GALACTIC EVOLUTION</subject><subject>GALAXIES</subject><subject>LUMINOSITY</subject><subject>MASS</subject><subject>MAXIMUM-LIKELIHOOD FIT</subject><subject>NONLUMINOUS MATTER</subject><subject>OSCILLATIONS</subject><subject>RED SHIFT</subject><subject>SPACE</subject><subject>SPECTROSCOPY</subject><subject>STATISTICS</subject><subject>TELESCOPES</subject><subject>WAVELENGTHS</subject><issn>1538-4357</issn><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAQRi0EEqVwAjaWWId4bMdxl1VJG0tpgkgiihCy8uOIIGhRnA3H4iKcCUdlwWZmvtGbWTyEroHcApHSJ4RwT7Bw50sAn_rA4QTNIGDS4ywIT__N5-jC2rfpgC4WM_R4_xDdqVWh0g0u4gi7lMdqXWCKY_zzjZNyq9IsV8UTXpep47IUl_lEP2e47_sXHG1Vnk_rRKUR3iyT5U5F-SU666p3a67--hyV66hYxV6SbdRqmXgNDcPRE0YayQPetgDQ1UQuJOMBBKaWIETFRRsa2rWUhZyIqq5c4QTA8ZWpO27YHN0c_x7s2Gvb9KNpXpvDfm-aUVMqJQ1AOIodqWY4WDuYTn8O_Uc1fGkgejKoJyF6MqidQU21M8h-AVblXJE</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Mehta, Vihang</creator><creator>Scarlata, Claudia</creator><creator>Colbert, James W.</creator><creator>Dai, Y. S.</creator><creator>Dressler, Alan</creator><creator>Henry, Alaina</creator><creator>Malkan, Matt</creator><creator>Rafelski, Marc</creator><creator>Siana, Brian</creator><creator>Teplitz, Harry I.</creator><creator>Bagley, Micaela</creator><creator>Beck, Melanie</creator><creator>Ross, Nathaniel R.</creator><creator>Rutkowski, Michael</creator><creator>Wang, Yun</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7166-6035</orcidid><orcidid>https://orcid.org/0000-0002-4935-9511</orcidid><orcidid>https://orcid.org/0000-0003-3527-1428</orcidid><orcidid>https://orcid.org/0000-0002-6317-0037</orcidid><orcidid>https://orcid.org/0000-0002-9136-8876</orcidid><orcidid>https://orcid.org/0000-0002-9946-4731</orcidid></search><sort><creationdate>20151001</creationdate><title>PREDICTING THE REDSHIFT 2 H α LUMINOSITY FUNCTION USING [O iii] EMISSION LINE GALAXIES</title><author>Mehta, Vihang ; Scarlata, Claudia ; Colbert, James W. ; Dai, Y. S. ; Dressler, Alan ; Henry, Alaina ; Malkan, Matt ; Rafelski, Marc ; Siana, Brian ; Teplitz, Harry I. ; Bagley, Micaela ; Beck, Melanie ; Ross, Nathaniel R. ; Rutkowski, Michael ; Wang, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>BALMER LINES</topic><topic>BARYONS</topic><topic>DETECTION</topic><topic>EMISSION</topic><topic>FUNCTIONS</topic><topic>GALACTIC EVOLUTION</topic><topic>GALAXIES</topic><topic>LUMINOSITY</topic><topic>MASS</topic><topic>MAXIMUM-LIKELIHOOD FIT</topic><topic>NONLUMINOUS MATTER</topic><topic>OSCILLATIONS</topic><topic>RED SHIFT</topic><topic>SPACE</topic><topic>SPECTROSCOPY</topic><topic>STATISTICS</topic><topic>TELESCOPES</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehta, Vihang</creatorcontrib><creatorcontrib>Scarlata, Claudia</creatorcontrib><creatorcontrib>Colbert, James W.</creatorcontrib><creatorcontrib>Dai, Y. S.</creatorcontrib><creatorcontrib>Dressler, Alan</creatorcontrib><creatorcontrib>Henry, Alaina</creatorcontrib><creatorcontrib>Malkan, Matt</creatorcontrib><creatorcontrib>Rafelski, Marc</creatorcontrib><creatorcontrib>Siana, Brian</creatorcontrib><creatorcontrib>Teplitz, Harry I.</creatorcontrib><creatorcontrib>Bagley, Micaela</creatorcontrib><creatorcontrib>Beck, Melanie</creatorcontrib><creatorcontrib>Ross, Nathaniel R.</creatorcontrib><creatorcontrib>Rutkowski, Michael</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehta, Vihang</au><au>Scarlata, Claudia</au><au>Colbert, James W.</au><au>Dai, Y. S.</au><au>Dressler, Alan</au><au>Henry, Alaina</au><au>Malkan, Matt</au><au>Rafelski, Marc</au><au>Siana, Brian</au><au>Teplitz, Harry I.</au><au>Bagley, Micaela</au><au>Beck, Melanie</au><au>Ross, Nathaniel R.</au><au>Rutkowski, Michael</au><au>Wang, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PREDICTING THE REDSHIFT 2 H α LUMINOSITY FUNCTION USING [O iii] EMISSION LINE GALAXIES</atitle><jtitle>The Astrophysical journal</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>811</volume><issue>2</issue><spage>141</spage><pages>141-</pages><issn>1538-4357</issn><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure baryonic acoustic oscillations in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the Wide Field Camera 3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of Hα emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8–1.65 μm wavelength range and allowing the detection of Hα emitters up to z ∼ 1.5 and [O iii] emitters to z ∼ 2.3. We derive the Hα–[O iii] bivariate line luminosity function (LLF) for WISP galaxies at z ∼ 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurements and we demonstrate how it can be used to derive the Hα luminosity function by exclusively fitting [O iii] data. Using the z∼2 [O iii] LLF and assuming that the relation between Hα and [O iii] luminosity does not change significantly over the redshift range, we predict the Hα number counts at z∼2—the upper end of the redshift range of interest for future surveys. For the redshift range 0.7&lt;z&lt;2, we expect ∼3000 galaxies deg{sup −2} for a flux limit of 3 × 10{sup −16} erg s{sup −1} cm{sup −2} (the proposed depth of the Euclid galaxy redshift survey) and ∼20,000 galaxies deg{sup −2} for a flux limit of ∼10{sup −16} erg s{sup −1} cm{sup −2} (the baseline depth of the WFIRST galaxy redshift survey).</abstract><cop>United Kingdom</cop><doi>10.1088/0004-637X/811/2/141</doi><orcidid>https://orcid.org/0000-0001-7166-6035</orcidid><orcidid>https://orcid.org/0000-0002-4935-9511</orcidid><orcidid>https://orcid.org/0000-0003-3527-1428</orcidid><orcidid>https://orcid.org/0000-0002-6317-0037</orcidid><orcidid>https://orcid.org/0000-0002-9136-8876</orcidid><orcidid>https://orcid.org/0000-0002-9946-4731</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1538-4357
ispartof The Astrophysical journal, 2015-10, Vol.811 (2), p.141
issn 1538-4357
0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22882516
source EZB Electronic Journals Library
subjects ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
BALMER LINES
BARYONS
DETECTION
EMISSION
FUNCTIONS
GALACTIC EVOLUTION
GALAXIES
LUMINOSITY
MASS
MAXIMUM-LIKELIHOOD FIT
NONLUMINOUS MATTER
OSCILLATIONS
RED SHIFT
SPACE
SPECTROSCOPY
STATISTICS
TELESCOPES
WAVELENGTHS
title PREDICTING THE REDSHIFT 2 H α LUMINOSITY FUNCTION USING [O iii] EMISSION LINE GALAXIES
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PREDICTING%20THE%20REDSHIFT%202%20H%20%CE%B1%20LUMINOSITY%20FUNCTION%20USING%20%5BO%20iii%5D%20EMISSION%20LINE%20GALAXIES&rft.jtitle=The%20Astrophysical%20journal&rft.au=Mehta,%20Vihang&rft.date=2015-10-01&rft.volume=811&rft.issue=2&rft.spage=141&rft.pages=141-&rft.issn=1538-4357&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/811/2/141&rft_dat=%3Ccrossref_osti_%3E10_1088_0004_637X_811_2_141%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-6e8e8454dd111fb089834515eb8166a46d7e2fd237406aba06a40114ddaebf4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true