Loading…

Structural Properties of Gas-Phase Molybdenum Oxide Clusters [Mo{sub 4}O{sub 13}]{sup 2−}, [HMo{sub 4}O{sub 13}]{sup −}, and [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} Studied by Collision-Induced Dissociation

Molybdenum oxide-based catalysts are widely used for the ammoxidation of toluene, methanation of CO, or hydrodeoxygenation. As a first step towards a gas-phase model system, we investigate here structural properties of mass-selected [Mo{sub 4}O{sub 13}]{sup 2−}, [HMo{sub 4}O{sub 13}]{sup −}, and [CH...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Society for Mass Spectrometry 2019-10, Vol.30 (10)
Main Authors: Plattner, Manuel, Baloglou, Aristeidis, Ončák, Milan, Linde, Christian van der, Beyer, Martin K.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 10
container_start_page
container_title Journal of the American Society for Mass Spectrometry
container_volume 30
creator Plattner, Manuel
Baloglou, Aristeidis
Ončák, Milan
Linde, Christian van der
Beyer, Martin K.
description Molybdenum oxide-based catalysts are widely used for the ammoxidation of toluene, methanation of CO, or hydrodeoxygenation. As a first step towards a gas-phase model system, we investigate here structural properties of mass-selected [Mo{sub 4}O{sub 13}]{sup 2−}, [HMo{sub 4}O{sub 13}]{sup −}, and [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} by a combination of collision-induced dissociation (CID) experiments and quantum chemical calculations. According to calculations, the common structural motif is an eight-membered ring composed of four MoO{sub 2} units and four O atoms. The 13th O atom is located above the center of the ring and connects two to four Mo centers. For [Mo{sub 4}O{sub 13}]{sup 2−} and [HMo{sub 4}O{sub 13}]{sup −}, dissociation requires opening or rearrangement of the ring structure, which is quite facile for the doubly charged [Mo{sub 4}O{sub 13}]{sup 2−}, but energetically more demanding for [HMo{sub 4}O{sub 13}]{sup −}. In the latter case, the hydrogen atom is found to stay preferentially with the negatively charged fragments [HMo{sub 2}O{sub 7}]{sup −} or [HMoO{sub 4}]{sup −}. The doubly charged species [Mo{sub 4}O{sub 13}]{sup 2−} loses one MoO{sub 3} unit at low energies while Coulomb explosion into the complementary fragments [Mo{sub 2}O{sub 6}]{sup −} and [Mo{sub 2}O{sub 7}]{sup −} dominates at elevated collision energies. [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} affords rearrangements of the methyl group with low barriers, preferentially eliminating formaldehyde, while the ring structure remains intact. [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} also reacts efficiently with water, leading to methanol or formaldehyde elimination. .
doi_str_mv 10.1007/s13361-019-02294-4
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22925068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22925068</sourcerecordid><originalsourceid>FETCH-LOGICAL-o98t-54d5c276d1a256c6ce9f6aa9c6d1b9155766feefac53d2c25c73e6051572ecd33</originalsourceid><addsrcrecordid>eNp9kc1KAzEAhIMoWKsv4Cng1Wh-NklzlFXbQksL7a1ISZMsjaybssmCRfbu2TfzFXwSF-tVTzN8M8xlALgk-IZgLG8jYUwQhIlCmFKVoewI9MhAKkQIZcedx1mGMMP8FJzF-IwxkVjJHvhcpLoxqal1Ced12Lk6eRdhKOBQRzTf6ujgNJT7jXVV8wJnr946mJdNTK6OcDUNb7HZwKyd_Shh7VNndpB-vX-013A1-qtwyHVl4Sof_USs_a8LF6mx3lm42cM8lKWPPlRoXNnGdPDexxiM16mD5-Ck0GV0F7_aB8vHh2U-QpPZcJzfTVBQg4R4ZrmhUliiKRdGGKcKobUyHdkowrkUonCu0IYzSw3lRjInMCdcUmcsY31wdZgNMfl1ND45szWhqpxJ6-4CyrEYsG_x3IMZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Properties of Gas-Phase Molybdenum Oxide Clusters [Mo{sub 4}O{sub 13}]{sup 2−}, [HMo{sub 4}O{sub 13}]{sup −}, and [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} Studied by Collision-Induced Dissociation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Plattner, Manuel ; Baloglou, Aristeidis ; Ončák, Milan ; Linde, Christian van der ; Beyer, Martin K.</creator><creatorcontrib>Plattner, Manuel ; Baloglou, Aristeidis ; Ončák, Milan ; Linde, Christian van der ; Beyer, Martin K.</creatorcontrib><description>Molybdenum oxide-based catalysts are widely used for the ammoxidation of toluene, methanation of CO, or hydrodeoxygenation. As a first step towards a gas-phase model system, we investigate here structural properties of mass-selected [Mo{sub 4}O{sub 13}]{sup 2−}, [HMo{sub 4}O{sub 13}]{sup −}, and [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} by a combination of collision-induced dissociation (CID) experiments and quantum chemical calculations. According to calculations, the common structural motif is an eight-membered ring composed of four MoO{sub 2} units and four O atoms. The 13th O atom is located above the center of the ring and connects two to four Mo centers. For [Mo{sub 4}O{sub 13}]{sup 2−} and [HMo{sub 4}O{sub 13}]{sup −}, dissociation requires opening or rearrangement of the ring structure, which is quite facile for the doubly charged [Mo{sub 4}O{sub 13}]{sup 2−}, but energetically more demanding for [HMo{sub 4}O{sub 13}]{sup −}. In the latter case, the hydrogen atom is found to stay preferentially with the negatively charged fragments [HMo{sub 2}O{sub 7}]{sup −} or [HMoO{sub 4}]{sup −}. The doubly charged species [Mo{sub 4}O{sub 13}]{sup 2−} loses one MoO{sub 3} unit at low energies while Coulomb explosion into the complementary fragments [Mo{sub 2}O{sub 6}]{sup −} and [Mo{sub 2}O{sub 7}]{sup −} dominates at elevated collision energies. [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} affords rearrangements of the methyl group with low barriers, preferentially eliminating formaldehyde, while the ring structure remains intact. [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} also reacts efficiently with water, leading to methanol or formaldehyde elimination. .</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1007/s13361-019-02294-4</identifier><language>eng</language><publisher>United States</publisher><subject>ATOMS ; CARBON MONOXIDE ; CATALYSIS ; CATALYSTS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; FORMALDEHYDE ; HYDROGEN ; MASS ; MOLYBDENUM OXIDES ; TOLUENE</subject><ispartof>Journal of the American Society for Mass Spectrometry, 2019-10, Vol.30 (10)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22925068$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Plattner, Manuel</creatorcontrib><creatorcontrib>Baloglou, Aristeidis</creatorcontrib><creatorcontrib>Ončák, Milan</creatorcontrib><creatorcontrib>Linde, Christian van der</creatorcontrib><creatorcontrib>Beyer, Martin K.</creatorcontrib><title>Structural Properties of Gas-Phase Molybdenum Oxide Clusters [Mo{sub 4}O{sub 13}]{sup 2−}, [HMo{sub 4}O{sub 13}]{sup −}, and [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} Studied by Collision-Induced Dissociation</title><title>Journal of the American Society for Mass Spectrometry</title><description>Molybdenum oxide-based catalysts are widely used for the ammoxidation of toluene, methanation of CO, or hydrodeoxygenation. As a first step towards a gas-phase model system, we investigate here structural properties of mass-selected [Mo{sub 4}O{sub 13}]{sup 2−}, [HMo{sub 4}O{sub 13}]{sup −}, and [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} by a combination of collision-induced dissociation (CID) experiments and quantum chemical calculations. According to calculations, the common structural motif is an eight-membered ring composed of four MoO{sub 2} units and four O atoms. The 13th O atom is located above the center of the ring and connects two to four Mo centers. For [Mo{sub 4}O{sub 13}]{sup 2−} and [HMo{sub 4}O{sub 13}]{sup −}, dissociation requires opening or rearrangement of the ring structure, which is quite facile for the doubly charged [Mo{sub 4}O{sub 13}]{sup 2−}, but energetically more demanding for [HMo{sub 4}O{sub 13}]{sup −}. In the latter case, the hydrogen atom is found to stay preferentially with the negatively charged fragments [HMo{sub 2}O{sub 7}]{sup −} or [HMoO{sub 4}]{sup −}. The doubly charged species [Mo{sub 4}O{sub 13}]{sup 2−} loses one MoO{sub 3} unit at low energies while Coulomb explosion into the complementary fragments [Mo{sub 2}O{sub 6}]{sup −} and [Mo{sub 2}O{sub 7}]{sup −} dominates at elevated collision energies. [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} affords rearrangements of the methyl group with low barriers, preferentially eliminating formaldehyde, while the ring structure remains intact. [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} also reacts efficiently with water, leading to methanol or formaldehyde elimination. .</description><subject>ATOMS</subject><subject>CARBON MONOXIDE</subject><subject>CATALYSIS</subject><subject>CATALYSTS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>FORMALDEHYDE</subject><subject>HYDROGEN</subject><subject>MASS</subject><subject>MOLYBDENUM OXIDES</subject><subject>TOLUENE</subject><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KAzEAhIMoWKsv4Cng1Wh-NklzlFXbQksL7a1ISZMsjaybssmCRfbu2TfzFXwSF-tVTzN8M8xlALgk-IZgLG8jYUwQhIlCmFKVoewI9MhAKkQIZcedx1mGMMP8FJzF-IwxkVjJHvhcpLoxqal1Ced12Lk6eRdhKOBQRzTf6ujgNJT7jXVV8wJnr946mJdNTK6OcDUNb7HZwKyd_Shh7VNndpB-vX-013A1-qtwyHVl4Sof_USs_a8LF6mx3lm42cM8lKWPPlRoXNnGdPDexxiM16mD5-Ck0GV0F7_aB8vHh2U-QpPZcJzfTVBQg4R4ZrmhUliiKRdGGKcKobUyHdkowrkUonCu0IYzSw3lRjInMCdcUmcsY31wdZgNMfl1ND45szWhqpxJ6-4CyrEYsG_x3IMZ</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Plattner, Manuel</creator><creator>Baloglou, Aristeidis</creator><creator>Ončák, Milan</creator><creator>Linde, Christian van der</creator><creator>Beyer, Martin K.</creator><scope>OTOTI</scope></search><sort><creationdate>20191015</creationdate><title>Structural Properties of Gas-Phase Molybdenum Oxide Clusters [Mo{sub 4}O{sub 13}]{sup 2−}, [HMo{sub 4}O{sub 13}]{sup −}, and [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} Studied by Collision-Induced Dissociation</title><author>Plattner, Manuel ; Baloglou, Aristeidis ; Ončák, Milan ; Linde, Christian van der ; Beyer, Martin K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o98t-54d5c276d1a256c6ce9f6aa9c6d1b9155766feefac53d2c25c73e6051572ecd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ATOMS</topic><topic>CARBON MONOXIDE</topic><topic>CATALYSIS</topic><topic>CATALYSTS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>FORMALDEHYDE</topic><topic>HYDROGEN</topic><topic>MASS</topic><topic>MOLYBDENUM OXIDES</topic><topic>TOLUENE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plattner, Manuel</creatorcontrib><creatorcontrib>Baloglou, Aristeidis</creatorcontrib><creatorcontrib>Ončák, Milan</creatorcontrib><creatorcontrib>Linde, Christian van der</creatorcontrib><creatorcontrib>Beyer, Martin K.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plattner, Manuel</au><au>Baloglou, Aristeidis</au><au>Ončák, Milan</au><au>Linde, Christian van der</au><au>Beyer, Martin K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Properties of Gas-Phase Molybdenum Oxide Clusters [Mo{sub 4}O{sub 13}]{sup 2−}, [HMo{sub 4}O{sub 13}]{sup −}, and [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} Studied by Collision-Induced Dissociation</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>30</volume><issue>10</issue><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>Molybdenum oxide-based catalysts are widely used for the ammoxidation of toluene, methanation of CO, or hydrodeoxygenation. As a first step towards a gas-phase model system, we investigate here structural properties of mass-selected [Mo{sub 4}O{sub 13}]{sup 2−}, [HMo{sub 4}O{sub 13}]{sup −}, and [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} by a combination of collision-induced dissociation (CID) experiments and quantum chemical calculations. According to calculations, the common structural motif is an eight-membered ring composed of four MoO{sub 2} units and four O atoms. The 13th O atom is located above the center of the ring and connects two to four Mo centers. For [Mo{sub 4}O{sub 13}]{sup 2−} and [HMo{sub 4}O{sub 13}]{sup −}, dissociation requires opening or rearrangement of the ring structure, which is quite facile for the doubly charged [Mo{sub 4}O{sub 13}]{sup 2−}, but energetically more demanding for [HMo{sub 4}O{sub 13}]{sup −}. In the latter case, the hydrogen atom is found to stay preferentially with the negatively charged fragments [HMo{sub 2}O{sub 7}]{sup −} or [HMoO{sub 4}]{sup −}. The doubly charged species [Mo{sub 4}O{sub 13}]{sup 2−} loses one MoO{sub 3} unit at low energies while Coulomb explosion into the complementary fragments [Mo{sub 2}O{sub 6}]{sup −} and [Mo{sub 2}O{sub 7}]{sup −} dominates at elevated collision energies. [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} affords rearrangements of the methyl group with low barriers, preferentially eliminating formaldehyde, while the ring structure remains intact. [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} also reacts efficiently with water, leading to methanol or formaldehyde elimination. .</abstract><cop>United States</cop><doi>10.1007/s13361-019-02294-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 1044-0305
ispartof Journal of the American Society for Mass Spectrometry, 2019-10, Vol.30 (10)
issn 1044-0305
1879-1123
language eng
recordid cdi_osti_scitechconnect_22925068
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects ATOMS
CARBON MONOXIDE
CATALYSIS
CATALYSTS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
FORMALDEHYDE
HYDROGEN
MASS
MOLYBDENUM OXIDES
TOLUENE
title Structural Properties of Gas-Phase Molybdenum Oxide Clusters [Mo{sub 4}O{sub 13}]{sup 2−}, [HMo{sub 4}O{sub 13}]{sup −}, and [CH{sub 3}Mo{sub 4}O{sub 13}]{sup −} Studied by Collision-Induced Dissociation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A25%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Properties%20of%20Gas-Phase%20Molybdenum%20Oxide%20Clusters%20%5BMo%7Bsub%204%7DO%7Bsub%2013%7D%5D%7Bsup%202%E2%88%92%7D,%20%5BHMo%7Bsub%204%7DO%7Bsub%2013%7D%5D%7Bsup%20%E2%88%92%7D,%20and%20%5BCH%7Bsub%203%7DMo%7Bsub%204%7DO%7Bsub%2013%7D%5D%7Bsup%20%E2%88%92%7D%20Studied%20by%20Collision-Induced%20Dissociation&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Plattner,%20Manuel&rft.date=2019-10-15&rft.volume=30&rft.issue=10&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1007/s13361-019-02294-4&rft_dat=%3Costi%3E22925068%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o98t-54d5c276d1a256c6ce9f6aa9c6d1b9155766feefac53d2c25c73e6051572ecd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true