Loading…

Disorder-induced heating as a mechanism for fast neutral gas heating in atmospheric pressure plasmas

Recent findings suggest that ions are strongly correlated in atmospheric pressure plasmas if the ionization fraction is sufficiently high ( ≳ 10 − 5 ). A consequence is that ionization causes disorder-induced heating (DIH), which triggers a significant rise in ion temperature on a picosecond timesca...

Full description

Saved in:
Bibliographic Details
Published in:Plasma sources science & technology 2024-02, Vol.33 (2), p.2
Main Authors: Acciarri, M D, Moore, C, Baalrud, S D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent findings suggest that ions are strongly correlated in atmospheric pressure plasmas if the ionization fraction is sufficiently high ( ≳ 10 − 5 ). A consequence is that ionization causes disorder-induced heating (DIH), which triggers a significant rise in ion temperature on a picosecond timescale. This is followed by a rise in the neutral gas temperature on a longer timescale of up to nanoseconds due to ion–neutral temperature relaxation. The sequence of DIH and ion–neutral temperature relaxation suggests a new mechanism for ultrafast neutral gas heating. Previous work considered only the case of an instantaneous ionization pulse, whereas the ionization pulse extends over nanoseconds in many experiments. Here, molecular dynamics simulations are used to analyze the evolution of ion and neutral gas temperatures for a gradual ionization over several nanoseconds. The results are compared with published experimental results from a nanosecond pulsed discharge, showing good agreement with a measurement of fast neutral gas heating.
ISSN:0963-0252
1361-6595
DOI:10.1088/1361-6595/ad257e