Loading…

Experimental and Theoretical Investigation of Optical Spectra of Methylene Green in Solutions

The hybrid multilevel approach based on molecular dynamics, quantum mechanics, and statistical theory has been applied to profiles of electronic absorption bands of a number of thiazine dyes (phenothiazine, methylene blue, and methylene green), whose photochemical and biological properties depend on...

Full description

Saved in:
Bibliographic Details
Published in:Russian physics journal 2019-02, Vol.61 (10), p.1752-1758
Main Authors: Tchaikovskaya, O. N., Krayukhina, V. S., Pomogaev, V. A., Chaidonov, A. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-c52fe577ddd06c210ada6b6da569d0064888250589c490e517a1b8d126a22d9f3
cites cdi_FETCH-LOGICAL-c386t-c52fe577ddd06c210ada6b6da569d0064888250589c490e517a1b8d126a22d9f3
container_end_page 1758
container_issue 10
container_start_page 1752
container_title Russian physics journal
container_volume 61
creator Tchaikovskaya, O. N.
Krayukhina, V. S.
Pomogaev, V. A.
Chaidonov, A. I.
description The hybrid multilevel approach based on molecular dynamics, quantum mechanics, and statistical theory has been applied to profiles of electronic absorption bands of a number of thiazine dyes (phenothiazine, methylene blue, and methylene green), whose photochemical and biological properties depend on the external medium. The effect of single fragments of the methylene green (MG) molecule on its spectral-luminescent properties is studied. The most preferred geometry for the MG molecule is identified, and its relations with the spectral properties and the solvent nature are established. The energies of the electron states are calculated, and their nature is revealed. The electrostatic potential is analyzed, and the places of the most probable interaction of the molecule with the medium are found. Conclusions on the mechanism of forming the MG absorption spectrum are made based on the observations and calculations performed within the framework of the present work. It is established that the formation of the N–H bonds leads to the formation of an inactive lower excited singlet state and delocalization of the electron charge upon excitation. The position of the maximum of the long-wavelength absorption band of the MG correlates with the donor number of solvents in the series acetonitrile < water < ethanol < isopropanol < dimethyl sulfoxide. The position of the MG electron transition in the region of 630 nm is determined by the interaction of nitrogen and sulfur atoms of the central ring rather than by the increased number of substituents in the structure of the molecule.
doi_str_mv 10.1007/s11182-019-01597-z
format article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22943326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A594429224</galeid><sourcerecordid>A594429224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-c52fe577ddd06c210ada6b6da569d0064888250589c490e517a1b8d126a22d9f3</originalsourceid><addsrcrecordid>eNp9kctKJTEQhhtxwMvMC7hqcN1Oks51KeINHFyoyyHEpPqcSJu0SR9Rn9460wPuJIQklf8r_qpqmiNKTigh6nellGrWEWpwC6O6j51mnwrVd4YxvYt3InmntVZ7zUGtT4QgJtV-8_f8bYISnyHNbmxdCu39GnKBOXp8X6dXqHNcuTnm1OahvZ2Wj7sJ_FzcNvQH5vX7CAnaywKQ2pjauzxutkT92fwY3Fjh1__zsHm4OL8_u-pubi-vz05vOt9rOXdesAGEUiEEIj2jxAUnH2VwQpqAPjkaZ4IIbTw3BARVjj7qQJl0jAUz9IfN8ZI3o1tbfZzBr31OCV1axgzveya_VFPJLxsszD7lTUlozDKquWSaK4aqk0W1ciPYmIaMhXpcAZ4j5oQhYvxUGM4ZNpcjwBbAl1xrgcFO2FBX3i0ldjsdu0zH4nTsv-nYD4T6BaooTisoX16-oT4BVPGSIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184628472</pqid></control><display><type>article</type><title>Experimental and Theoretical Investigation of Optical Spectra of Methylene Green in Solutions</title><source>Springer Nature</source><creator>Tchaikovskaya, O. N. ; Krayukhina, V. S. ; Pomogaev, V. A. ; Chaidonov, A. I.</creator><creatorcontrib>Tchaikovskaya, O. N. ; Krayukhina, V. S. ; Pomogaev, V. A. ; Chaidonov, A. I.</creatorcontrib><description>The hybrid multilevel approach based on molecular dynamics, quantum mechanics, and statistical theory has been applied to profiles of electronic absorption bands of a number of thiazine dyes (phenothiazine, methylene blue, and methylene green), whose photochemical and biological properties depend on the external medium. The effect of single fragments of the methylene green (MG) molecule on its spectral-luminescent properties is studied. The most preferred geometry for the MG molecule is identified, and its relations with the spectral properties and the solvent nature are established. The energies of the electron states are calculated, and their nature is revealed. The electrostatic potential is analyzed, and the places of the most probable interaction of the molecule with the medium are found. Conclusions on the mechanism of forming the MG absorption spectrum are made based on the observations and calculations performed within the framework of the present work. It is established that the formation of the N–H bonds leads to the formation of an inactive lower excited singlet state and delocalization of the electron charge upon excitation. The position of the maximum of the long-wavelength absorption band of the MG correlates with the donor number of solvents in the series acetonitrile &lt; water &lt; ethanol &lt; isopropanol &lt; dimethyl sulfoxide. The position of the MG electron transition in the region of 630 nm is determined by the interaction of nitrogen and sulfur atoms of the central ring rather than by the increased number of substituents in the structure of the molecule.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-019-01597-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>ABSORPTION SPECTRA ; ACETONITRILE ; ATOMIC AND MOLECULAR PHYSICS ; Atomic properties ; Band theory ; Biological properties ; Bonds (Securities) ; Condensed Matter Physics ; Dimethyl sulfoxide ; DMSO ; Electron states ; Electron transitions ; ELECTRONS ; ELECTROSTATICS ; ETHANOL ; EXCITATION ; Hadrons ; Heavy Ions ; Lasers ; LUMINESCENCE ; Mathematical analysis ; Mathematical and Computational Physics ; METHYLENE BLUE ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; MOLECULAR STRUCTURE ; Nitriles ; NITROGEN ; Nitrogen (Chemical element) ; Nuclear Physics ; Optical Devices ; Optical properties ; Optics ; Phenothiazines ; PHOTOCHEMISTRY ; Photonics ; Physics ; Physics and Astronomy ; PROPANOLS ; QUANTUM MECHANICS ; SOLUTIONS ; SOLVENTS ; STATISTICAL MODELS ; SULFUR ; Sulfur compounds ; Theoretical ; Water ; WAVELENGTHS</subject><ispartof>Russian physics journal, 2019-02, Vol.61 (10), p.1752-1758</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-c52fe577ddd06c210ada6b6da569d0064888250589c490e517a1b8d126a22d9f3</citedby><cites>FETCH-LOGICAL-c386t-c52fe577ddd06c210ada6b6da569d0064888250589c490e517a1b8d126a22d9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22943326$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tchaikovskaya, O. N.</creatorcontrib><creatorcontrib>Krayukhina, V. S.</creatorcontrib><creatorcontrib>Pomogaev, V. A.</creatorcontrib><creatorcontrib>Chaidonov, A. I.</creatorcontrib><title>Experimental and Theoretical Investigation of Optical Spectra of Methylene Green in Solutions</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The hybrid multilevel approach based on molecular dynamics, quantum mechanics, and statistical theory has been applied to profiles of electronic absorption bands of a number of thiazine dyes (phenothiazine, methylene blue, and methylene green), whose photochemical and biological properties depend on the external medium. The effect of single fragments of the methylene green (MG) molecule on its spectral-luminescent properties is studied. The most preferred geometry for the MG molecule is identified, and its relations with the spectral properties and the solvent nature are established. The energies of the electron states are calculated, and their nature is revealed. The electrostatic potential is analyzed, and the places of the most probable interaction of the molecule with the medium are found. Conclusions on the mechanism of forming the MG absorption spectrum are made based on the observations and calculations performed within the framework of the present work. It is established that the formation of the N–H bonds leads to the formation of an inactive lower excited singlet state and delocalization of the electron charge upon excitation. The position of the maximum of the long-wavelength absorption band of the MG correlates with the donor number of solvents in the series acetonitrile &lt; water &lt; ethanol &lt; isopropanol &lt; dimethyl sulfoxide. The position of the MG electron transition in the region of 630 nm is determined by the interaction of nitrogen and sulfur atoms of the central ring rather than by the increased number of substituents in the structure of the molecule.</description><subject>ABSORPTION SPECTRA</subject><subject>ACETONITRILE</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Atomic properties</subject><subject>Band theory</subject><subject>Biological properties</subject><subject>Bonds (Securities)</subject><subject>Condensed Matter Physics</subject><subject>Dimethyl sulfoxide</subject><subject>DMSO</subject><subject>Electron states</subject><subject>Electron transitions</subject><subject>ELECTRONS</subject><subject>ELECTROSTATICS</subject><subject>ETHANOL</subject><subject>EXCITATION</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>LUMINESCENCE</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>METHYLENE BLUE</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>MOLECULAR STRUCTURE</subject><subject>Nitriles</subject><subject>NITROGEN</subject><subject>Nitrogen (Chemical element)</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Phenothiazines</subject><subject>PHOTOCHEMISTRY</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PROPANOLS</subject><subject>QUANTUM MECHANICS</subject><subject>SOLUTIONS</subject><subject>SOLVENTS</subject><subject>STATISTICAL MODELS</subject><subject>SULFUR</subject><subject>Sulfur compounds</subject><subject>Theoretical</subject><subject>Water</subject><subject>WAVELENGTHS</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kctKJTEQhhtxwMvMC7hqcN1Oks51KeINHFyoyyHEpPqcSJu0SR9Rn9460wPuJIQklf8r_qpqmiNKTigh6nellGrWEWpwC6O6j51mnwrVd4YxvYt3InmntVZ7zUGtT4QgJtV-8_f8bYISnyHNbmxdCu39GnKBOXp8X6dXqHNcuTnm1OahvZ2Wj7sJ_FzcNvQH5vX7CAnaywKQ2pjauzxutkT92fwY3Fjh1__zsHm4OL8_u-pubi-vz05vOt9rOXdesAGEUiEEIj2jxAUnH2VwQpqAPjkaZ4IIbTw3BARVjj7qQJl0jAUz9IfN8ZI3o1tbfZzBr31OCV1axgzveya_VFPJLxsszD7lTUlozDKquWSaK4aqk0W1ciPYmIaMhXpcAZ4j5oQhYvxUGM4ZNpcjwBbAl1xrgcFO2FBX3i0ldjsdu0zH4nTsv-nYD4T6BaooTisoX16-oT4BVPGSIQ</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Tchaikovskaya, O. N.</creator><creator>Krayukhina, V. S.</creator><creator>Pomogaev, V. A.</creator><creator>Chaidonov, A. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20190215</creationdate><title>Experimental and Theoretical Investigation of Optical Spectra of Methylene Green in Solutions</title><author>Tchaikovskaya, O. N. ; Krayukhina, V. S. ; Pomogaev, V. A. ; Chaidonov, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-c52fe577ddd06c210ada6b6da569d0064888250589c490e517a1b8d126a22d9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ABSORPTION SPECTRA</topic><topic>ACETONITRILE</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Atomic properties</topic><topic>Band theory</topic><topic>Biological properties</topic><topic>Bonds (Securities)</topic><topic>Condensed Matter Physics</topic><topic>Dimethyl sulfoxide</topic><topic>DMSO</topic><topic>Electron states</topic><topic>Electron transitions</topic><topic>ELECTRONS</topic><topic>ELECTROSTATICS</topic><topic>ETHANOL</topic><topic>EXCITATION</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>LUMINESCENCE</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>METHYLENE BLUE</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>MOLECULAR STRUCTURE</topic><topic>Nitriles</topic><topic>NITROGEN</topic><topic>Nitrogen (Chemical element)</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Phenothiazines</topic><topic>PHOTOCHEMISTRY</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PROPANOLS</topic><topic>QUANTUM MECHANICS</topic><topic>SOLUTIONS</topic><topic>SOLVENTS</topic><topic>STATISTICAL MODELS</topic><topic>SULFUR</topic><topic>Sulfur compounds</topic><topic>Theoretical</topic><topic>Water</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tchaikovskaya, O. N.</creatorcontrib><creatorcontrib>Krayukhina, V. S.</creatorcontrib><creatorcontrib>Pomogaev, V. A.</creatorcontrib><creatorcontrib>Chaidonov, A. I.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tchaikovskaya, O. N.</au><au>Krayukhina, V. S.</au><au>Pomogaev, V. A.</au><au>Chaidonov, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and Theoretical Investigation of Optical Spectra of Methylene Green in Solutions</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2019-02-15</date><risdate>2019</risdate><volume>61</volume><issue>10</issue><spage>1752</spage><epage>1758</epage><pages>1752-1758</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The hybrid multilevel approach based on molecular dynamics, quantum mechanics, and statistical theory has been applied to profiles of electronic absorption bands of a number of thiazine dyes (phenothiazine, methylene blue, and methylene green), whose photochemical and biological properties depend on the external medium. The effect of single fragments of the methylene green (MG) molecule on its spectral-luminescent properties is studied. The most preferred geometry for the MG molecule is identified, and its relations with the spectral properties and the solvent nature are established. The energies of the electron states are calculated, and their nature is revealed. The electrostatic potential is analyzed, and the places of the most probable interaction of the molecule with the medium are found. Conclusions on the mechanism of forming the MG absorption spectrum are made based on the observations and calculations performed within the framework of the present work. It is established that the formation of the N–H bonds leads to the formation of an inactive lower excited singlet state and delocalization of the electron charge upon excitation. The position of the maximum of the long-wavelength absorption band of the MG correlates with the donor number of solvents in the series acetonitrile &lt; water &lt; ethanol &lt; isopropanol &lt; dimethyl sulfoxide. The position of the MG electron transition in the region of 630 nm is determined by the interaction of nitrogen and sulfur atoms of the central ring rather than by the increased number of substituents in the structure of the molecule.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-019-01597-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2019-02, Vol.61 (10), p.1752-1758
issn 1064-8887
1573-9228
language eng
recordid cdi_osti_scitechconnect_22943326
source Springer Nature
subjects ABSORPTION SPECTRA
ACETONITRILE
ATOMIC AND MOLECULAR PHYSICS
Atomic properties
Band theory
Biological properties
Bonds (Securities)
Condensed Matter Physics
Dimethyl sulfoxide
DMSO
Electron states
Electron transitions
ELECTRONS
ELECTROSTATICS
ETHANOL
EXCITATION
Hadrons
Heavy Ions
Lasers
LUMINESCENCE
Mathematical analysis
Mathematical and Computational Physics
METHYLENE BLUE
Molecular dynamics
MOLECULAR DYNAMICS METHOD
MOLECULAR STRUCTURE
Nitriles
NITROGEN
Nitrogen (Chemical element)
Nuclear Physics
Optical Devices
Optical properties
Optics
Phenothiazines
PHOTOCHEMISTRY
Photonics
Physics
Physics and Astronomy
PROPANOLS
QUANTUM MECHANICS
SOLUTIONS
SOLVENTS
STATISTICAL MODELS
SULFUR
Sulfur compounds
Theoretical
Water
WAVELENGTHS
title Experimental and Theoretical Investigation of Optical Spectra of Methylene Green in Solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20Theoretical%20Investigation%20of%20Optical%20Spectra%20of%20Methylene%20Green%20in%20Solutions&rft.jtitle=Russian%20physics%20journal&rft.au=Tchaikovskaya,%20O.%20N.&rft.date=2019-02-15&rft.volume=61&rft.issue=10&rft.spage=1752&rft.epage=1758&rft.pages=1752-1758&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-019-01597-z&rft_dat=%3Cgale_osti_%3EA594429224%3C/gale_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-c52fe577ddd06c210ada6b6da569d0064888250589c490e517a1b8d126a22d9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2184628472&rft_id=info:pmid/&rft_galeid=A594429224&rfr_iscdi=true