Loading…

MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons

The properties of InGaAs/GaAs quantum dots (QDs) grown by MOS-hydride migration-stimulated epitaxy at a reduced pressure using submonolayer deposition are investigated. The wavelength of their photoluminescence at 300 K is in the range of 1.28–1.31 μm and can be controlled by varying the growth temp...

Full description

Saved in:
Bibliographic Details
Published in:Semiconductors (Woodbury, N.Y.) N.Y.), 2019-03, Vol.53 (3), p.326-331
Main Authors: Baidus, N. V., Kukushkin, V. A., Nekorkin, S. M., Kruglov, A. V., Reunov, D. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c296t-a1c9dd21dc1df1de329493c0d6f3cf42a4c3cb0cf70ecae6540413c10a9815283
container_end_page 331
container_issue 3
container_start_page 326
container_title Semiconductors (Woodbury, N.Y.)
container_volume 53
creator Baidus, N. V.
Kukushkin, V. A.
Nekorkin, S. M.
Kruglov, A. V.
Reunov, D. G.
description The properties of InGaAs/GaAs quantum dots (QDs) grown by MOS-hydride migration-stimulated epitaxy at a reduced pressure using submonolayer deposition are investigated. The wavelength of their photoluminescence at 300 K is in the range of 1.28–1.31 μm and can be controlled by varying the growth temperature and the number of QD-deposition cycles. The highest QD surface density is 3 × 10 10 cm –2 . Structures with 1–3 QD layers and spacer layers 5–12 nm thick between them are grown. The spacer layers (as well as the cap layers) are selectively doped with carbon (acceptor). It is established that the QD photoluminescence is characterized by an enhanced degree of polarization in the direction orthogonal to the structure plane. This should favor their use for the excitation of surface plasmon–polaritons in Schottky light-emitting diodes.
doi_str_mv 10.1134/S1063782619030047
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22945052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213197293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-a1c9dd21dc1df1de329493c0d6f3cf42a4c3cb0cf70ecae6540413c10a9815283</originalsourceid><addsrcrecordid>eNp1kc1KAzEQxxdRsH48gLeA57WZJPuRY6laBcXK6nmJ2cSutElNstq9-Q6-oU9ilgoexMvMwPx-fwYmSU4AnwFQNq4A57QoSQ4cU4xZsZOMAHOc5qzgu8Oc03TY7ycH3r9gDFBmbJS83d5V6VXfuLZR6GLdBrHp0czZ97BAVqNrMxMTPx4KqrqnlTV2KXrl0H0nTOhW6NwGj7R1KCyiv5ExILTWDG7VOS2kQvOl8FH8-vicR9m1wRp_lOxpsfTq-KcfJo-XFw_Tq_TmbnY9ndykkvA8pAIkbxoCjYRGQ6Mo4YxTiZtcU6kZEUxS-YSlLrCSQuUZwwyoBCx4CRkp6WFyus21PrS1j-cpuZDWGCVDTWJahjPyS62dfe2UD_WL7ZyJh0UGKPCCcBop2FLSWe-d0vXatSvh-hpwPTyh_vOE6JCt4yNrnpX7Tf5f-gbeWomg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213197293</pqid></control><display><type>article</type><title>MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons</title><source>Springer Link</source><creator>Baidus, N. V. ; Kukushkin, V. A. ; Nekorkin, S. M. ; Kruglov, A. V. ; Reunov, D. G.</creator><creatorcontrib>Baidus, N. V. ; Kukushkin, V. A. ; Nekorkin, S. M. ; Kruglov, A. V. ; Reunov, D. G.</creatorcontrib><description>The properties of InGaAs/GaAs quantum dots (QDs) grown by MOS-hydride migration-stimulated epitaxy at a reduced pressure using submonolayer deposition are investigated. The wavelength of their photoluminescence at 300 K is in the range of 1.28–1.31 μm and can be controlled by varying the growth temperature and the number of QD-deposition cycles. The highest QD surface density is 3 × 10 10 cm –2 . Structures with 1–3 QD layers and spacer layers 5–12 nm thick between them are grown. The spacer layers (as well as the cap layers) are selectively doped with carbon (acceptor). It is established that the QD photoluminescence is characterized by an enhanced degree of polarization in the direction orthogonal to the structure plane. This should favor their use for the excitation of surface plasmon–polaritons in Schottky light-emitting diodes.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782619030047</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DEPOSITION ; Diodes ; DOPED MATERIALS ; Epitaxial growth ; EPITAXY ; EXCITATION ; Gallium arsenide ; GALLIUM ARSENIDES ; HYDRIDES ; INDIUM ARSENIDES ; Indium gallium arsenides ; LIGHT EMITTING DIODES ; Low-Dimensional Systems ; Magnetic Materials ; Magnetism ; Migration ; MOS TRANSISTORS ; Organic light emitting diodes ; PHOTOLUMINESCENCE ; Physics ; Physics and Astronomy ; PLASMONS ; Polaritons ; POLARIZATION ; POLARONS ; QUANTUM DOTS ; Quantum Phenomena ; Schottky diodes ; Semiconductor Structures ; SPACERS ; WAVELENGTHS</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2019-03, Vol.53 (3), p.326-331</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-a1c9dd21dc1df1de329493c0d6f3cf42a4c3cb0cf70ecae6540413c10a9815283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22945052$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Baidus, N. V.</creatorcontrib><creatorcontrib>Kukushkin, V. A.</creatorcontrib><creatorcontrib>Nekorkin, S. M.</creatorcontrib><creatorcontrib>Kruglov, A. V.</creatorcontrib><creatorcontrib>Reunov, D. G.</creatorcontrib><title>MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>The properties of InGaAs/GaAs quantum dots (QDs) grown by MOS-hydride migration-stimulated epitaxy at a reduced pressure using submonolayer deposition are investigated. The wavelength of their photoluminescence at 300 K is in the range of 1.28–1.31 μm and can be controlled by varying the growth temperature and the number of QD-deposition cycles. The highest QD surface density is 3 × 10 10 cm –2 . Structures with 1–3 QD layers and spacer layers 5–12 nm thick between them are grown. The spacer layers (as well as the cap layers) are selectively doped with carbon (acceptor). It is established that the QD photoluminescence is characterized by an enhanced degree of polarization in the direction orthogonal to the structure plane. This should favor their use for the excitation of surface plasmon–polaritons in Schottky light-emitting diodes.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DEPOSITION</subject><subject>Diodes</subject><subject>DOPED MATERIALS</subject><subject>Epitaxial growth</subject><subject>EPITAXY</subject><subject>EXCITATION</subject><subject>Gallium arsenide</subject><subject>GALLIUM ARSENIDES</subject><subject>HYDRIDES</subject><subject>INDIUM ARSENIDES</subject><subject>Indium gallium arsenides</subject><subject>LIGHT EMITTING DIODES</subject><subject>Low-Dimensional Systems</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Migration</subject><subject>MOS TRANSISTORS</subject><subject>Organic light emitting diodes</subject><subject>PHOTOLUMINESCENCE</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PLASMONS</subject><subject>Polaritons</subject><subject>POLARIZATION</subject><subject>POLARONS</subject><subject>QUANTUM DOTS</subject><subject>Quantum Phenomena</subject><subject>Schottky diodes</subject><subject>Semiconductor Structures</subject><subject>SPACERS</subject><subject>WAVELENGTHS</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc1KAzEQxxdRsH48gLeA57WZJPuRY6laBcXK6nmJ2cSutElNstq9-Q6-oU9ilgoexMvMwPx-fwYmSU4AnwFQNq4A57QoSQ4cU4xZsZOMAHOc5qzgu8Oc03TY7ycH3r9gDFBmbJS83d5V6VXfuLZR6GLdBrHp0czZ97BAVqNrMxMTPx4KqrqnlTV2KXrl0H0nTOhW6NwGj7R1KCyiv5ExILTWDG7VOS2kQvOl8FH8-vicR9m1wRp_lOxpsfTq-KcfJo-XFw_Tq_TmbnY9ndykkvA8pAIkbxoCjYRGQ6Mo4YxTiZtcU6kZEUxS-YSlLrCSQuUZwwyoBCx4CRkp6WFyus21PrS1j-cpuZDWGCVDTWJahjPyS62dfe2UD_WL7ZyJh0UGKPCCcBop2FLSWe-d0vXatSvh-hpwPTyh_vOE6JCt4yNrnpX7Tf5f-gbeWomg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Baidus, N. V.</creator><creator>Kukushkin, V. A.</creator><creator>Nekorkin, S. M.</creator><creator>Kruglov, A. V.</creator><creator>Reunov, D. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20190301</creationdate><title>MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons</title><author>Baidus, N. V. ; Kukushkin, V. A. ; Nekorkin, S. M. ; Kruglov, A. V. ; Reunov, D. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-a1c9dd21dc1df1de329493c0d6f3cf42a4c3cb0cf70ecae6540413c10a9815283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DEPOSITION</topic><topic>Diodes</topic><topic>DOPED MATERIALS</topic><topic>Epitaxial growth</topic><topic>EPITAXY</topic><topic>EXCITATION</topic><topic>Gallium arsenide</topic><topic>GALLIUM ARSENIDES</topic><topic>HYDRIDES</topic><topic>INDIUM ARSENIDES</topic><topic>Indium gallium arsenides</topic><topic>LIGHT EMITTING DIODES</topic><topic>Low-Dimensional Systems</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Migration</topic><topic>MOS TRANSISTORS</topic><topic>Organic light emitting diodes</topic><topic>PHOTOLUMINESCENCE</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PLASMONS</topic><topic>Polaritons</topic><topic>POLARIZATION</topic><topic>POLARONS</topic><topic>QUANTUM DOTS</topic><topic>Quantum Phenomena</topic><topic>Schottky diodes</topic><topic>Semiconductor Structures</topic><topic>SPACERS</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baidus, N. V.</creatorcontrib><creatorcontrib>Kukushkin, V. A.</creatorcontrib><creatorcontrib>Nekorkin, S. M.</creatorcontrib><creatorcontrib>Kruglov, A. V.</creatorcontrib><creatorcontrib>Reunov, D. G.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baidus, N. V.</au><au>Kukushkin, V. A.</au><au>Nekorkin, S. M.</au><au>Kruglov, A. V.</au><au>Reunov, D. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>53</volume><issue>3</issue><spage>326</spage><epage>331</epage><pages>326-331</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>The properties of InGaAs/GaAs quantum dots (QDs) grown by MOS-hydride migration-stimulated epitaxy at a reduced pressure using submonolayer deposition are investigated. The wavelength of their photoluminescence at 300 K is in the range of 1.28–1.31 μm and can be controlled by varying the growth temperature and the number of QD-deposition cycles. The highest QD surface density is 3 × 10 10 cm –2 . Structures with 1–3 QD layers and spacer layers 5–12 nm thick between them are grown. The spacer layers (as well as the cap layers) are selectively doped with carbon (acceptor). It is established that the QD photoluminescence is characterized by an enhanced degree of polarization in the direction orthogonal to the structure plane. This should favor their use for the excitation of surface plasmon–polaritons in Schottky light-emitting diodes.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782619030047</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7826
ispartof Semiconductors (Woodbury, N.Y.), 2019-03, Vol.53 (3), p.326-331
issn 1063-7826
1090-6479
language eng
recordid cdi_osti_scitechconnect_22945052
source Springer Link
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
DEPOSITION
Diodes
DOPED MATERIALS
Epitaxial growth
EPITAXY
EXCITATION
Gallium arsenide
GALLIUM ARSENIDES
HYDRIDES
INDIUM ARSENIDES
Indium gallium arsenides
LIGHT EMITTING DIODES
Low-Dimensional Systems
Magnetic Materials
Magnetism
Migration
MOS TRANSISTORS
Organic light emitting diodes
PHOTOLUMINESCENCE
Physics
Physics and Astronomy
PLASMONS
Polaritons
POLARIZATION
POLARONS
QUANTUM DOTS
Quantum Phenomena
Schottky diodes
Semiconductor Structures
SPACERS
WAVELENGTHS
title MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOS-Hydride%20Epitaxy%20Growth%20of%20InGaAs/GaAs%20Submonolayer%20Quantum%20Dots%20for%20the%20Excitation%20of%20Surface%20Plasmon%E2%80%93Polaritons&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Baidus,%20N.%20V.&rft.date=2019-03-01&rft.volume=53&rft.issue=3&rft.spage=326&rft.epage=331&rft.pages=326-331&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782619030047&rft_dat=%3Cproquest_osti_%3E2213197293%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-a1c9dd21dc1df1de329493c0d6f3cf42a4c3cb0cf70ecae6540413c10a9815283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2213197293&rft_id=info:pmid/&rfr_iscdi=true