Loading…
MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons
The properties of InGaAs/GaAs quantum dots (QDs) grown by MOS-hydride migration-stimulated epitaxy at a reduced pressure using submonolayer deposition are investigated. The wavelength of their photoluminescence at 300 K is in the range of 1.28–1.31 μm and can be controlled by varying the growth temp...
Saved in:
Published in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2019-03, Vol.53 (3), p.326-331 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c296t-a1c9dd21dc1df1de329493c0d6f3cf42a4c3cb0cf70ecae6540413c10a9815283 |
container_end_page | 331 |
container_issue | 3 |
container_start_page | 326 |
container_title | Semiconductors (Woodbury, N.Y.) |
container_volume | 53 |
creator | Baidus, N. V. Kukushkin, V. A. Nekorkin, S. M. Kruglov, A. V. Reunov, D. G. |
description | The properties of InGaAs/GaAs quantum dots (QDs) grown by MOS-hydride migration-stimulated epitaxy at a reduced pressure using submonolayer deposition are investigated. The wavelength of their photoluminescence at 300 K is in the range of 1.28–1.31 μm and can be controlled by varying the growth temperature and the number of QD-deposition cycles. The highest QD surface density is 3 × 10
10
cm
–2
. Structures with 1–3 QD layers and spacer layers 5–12 nm thick between them are grown. The spacer layers (as well as the cap layers) are selectively doped with carbon (acceptor). It is established that the QD photoluminescence is characterized by an enhanced degree of polarization in the direction orthogonal to the structure plane. This should favor their use for the excitation of surface plasmon–polaritons in Schottky light-emitting diodes. |
doi_str_mv | 10.1134/S1063782619030047 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22945052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213197293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-a1c9dd21dc1df1de329493c0d6f3cf42a4c3cb0cf70ecae6540413c10a9815283</originalsourceid><addsrcrecordid>eNp1kc1KAzEQxxdRsH48gLeA57WZJPuRY6laBcXK6nmJ2cSutElNstq9-Q6-oU9ilgoexMvMwPx-fwYmSU4AnwFQNq4A57QoSQ4cU4xZsZOMAHOc5qzgu8Oc03TY7ycH3r9gDFBmbJS83d5V6VXfuLZR6GLdBrHp0czZ97BAVqNrMxMTPx4KqrqnlTV2KXrl0H0nTOhW6NwGj7R1KCyiv5ExILTWDG7VOS2kQvOl8FH8-vicR9m1wRp_lOxpsfTq-KcfJo-XFw_Tq_TmbnY9ndykkvA8pAIkbxoCjYRGQ6Mo4YxTiZtcU6kZEUxS-YSlLrCSQuUZwwyoBCx4CRkp6WFyus21PrS1j-cpuZDWGCVDTWJahjPyS62dfe2UD_WL7ZyJh0UGKPCCcBop2FLSWe-d0vXatSvh-hpwPTyh_vOE6JCt4yNrnpX7Tf5f-gbeWomg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213197293</pqid></control><display><type>article</type><title>MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons</title><source>Springer Link</source><creator>Baidus, N. V. ; Kukushkin, V. A. ; Nekorkin, S. M. ; Kruglov, A. V. ; Reunov, D. G.</creator><creatorcontrib>Baidus, N. V. ; Kukushkin, V. A. ; Nekorkin, S. M. ; Kruglov, A. V. ; Reunov, D. G.</creatorcontrib><description>The properties of InGaAs/GaAs quantum dots (QDs) grown by MOS-hydride migration-stimulated epitaxy at a reduced pressure using submonolayer deposition are investigated. The wavelength of their photoluminescence at 300 K is in the range of 1.28–1.31 μm and can be controlled by varying the growth temperature and the number of QD-deposition cycles. The highest QD surface density is 3 × 10
10
cm
–2
. Structures with 1–3 QD layers and spacer layers 5–12 nm thick between them are grown. The spacer layers (as well as the cap layers) are selectively doped with carbon (acceptor). It is established that the QD photoluminescence is characterized by an enhanced degree of polarization in the direction orthogonal to the structure plane. This should favor their use for the excitation of surface plasmon–polaritons in Schottky light-emitting diodes.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782619030047</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DEPOSITION ; Diodes ; DOPED MATERIALS ; Epitaxial growth ; EPITAXY ; EXCITATION ; Gallium arsenide ; GALLIUM ARSENIDES ; HYDRIDES ; INDIUM ARSENIDES ; Indium gallium arsenides ; LIGHT EMITTING DIODES ; Low-Dimensional Systems ; Magnetic Materials ; Magnetism ; Migration ; MOS TRANSISTORS ; Organic light emitting diodes ; PHOTOLUMINESCENCE ; Physics ; Physics and Astronomy ; PLASMONS ; Polaritons ; POLARIZATION ; POLARONS ; QUANTUM DOTS ; Quantum Phenomena ; Schottky diodes ; Semiconductor Structures ; SPACERS ; WAVELENGTHS</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2019-03, Vol.53 (3), p.326-331</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-a1c9dd21dc1df1de329493c0d6f3cf42a4c3cb0cf70ecae6540413c10a9815283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22945052$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Baidus, N. V.</creatorcontrib><creatorcontrib>Kukushkin, V. A.</creatorcontrib><creatorcontrib>Nekorkin, S. M.</creatorcontrib><creatorcontrib>Kruglov, A. V.</creatorcontrib><creatorcontrib>Reunov, D. G.</creatorcontrib><title>MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>The properties of InGaAs/GaAs quantum dots (QDs) grown by MOS-hydride migration-stimulated epitaxy at a reduced pressure using submonolayer deposition are investigated. The wavelength of their photoluminescence at 300 K is in the range of 1.28–1.31 μm and can be controlled by varying the growth temperature and the number of QD-deposition cycles. The highest QD surface density is 3 × 10
10
cm
–2
. Structures with 1–3 QD layers and spacer layers 5–12 nm thick between them are grown. The spacer layers (as well as the cap layers) are selectively doped with carbon (acceptor). It is established that the QD photoluminescence is characterized by an enhanced degree of polarization in the direction orthogonal to the structure plane. This should favor their use for the excitation of surface plasmon–polaritons in Schottky light-emitting diodes.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DEPOSITION</subject><subject>Diodes</subject><subject>DOPED MATERIALS</subject><subject>Epitaxial growth</subject><subject>EPITAXY</subject><subject>EXCITATION</subject><subject>Gallium arsenide</subject><subject>GALLIUM ARSENIDES</subject><subject>HYDRIDES</subject><subject>INDIUM ARSENIDES</subject><subject>Indium gallium arsenides</subject><subject>LIGHT EMITTING DIODES</subject><subject>Low-Dimensional Systems</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Migration</subject><subject>MOS TRANSISTORS</subject><subject>Organic light emitting diodes</subject><subject>PHOTOLUMINESCENCE</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PLASMONS</subject><subject>Polaritons</subject><subject>POLARIZATION</subject><subject>POLARONS</subject><subject>QUANTUM DOTS</subject><subject>Quantum Phenomena</subject><subject>Schottky diodes</subject><subject>Semiconductor Structures</subject><subject>SPACERS</subject><subject>WAVELENGTHS</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc1KAzEQxxdRsH48gLeA57WZJPuRY6laBcXK6nmJ2cSutElNstq9-Q6-oU9ilgoexMvMwPx-fwYmSU4AnwFQNq4A57QoSQ4cU4xZsZOMAHOc5qzgu8Oc03TY7ycH3r9gDFBmbJS83d5V6VXfuLZR6GLdBrHp0czZ97BAVqNrMxMTPx4KqrqnlTV2KXrl0H0nTOhW6NwGj7R1KCyiv5ExILTWDG7VOS2kQvOl8FH8-vicR9m1wRp_lOxpsfTq-KcfJo-XFw_Tq_TmbnY9ndykkvA8pAIkbxoCjYRGQ6Mo4YxTiZtcU6kZEUxS-YSlLrCSQuUZwwyoBCx4CRkp6WFyus21PrS1j-cpuZDWGCVDTWJahjPyS62dfe2UD_WL7ZyJh0UGKPCCcBop2FLSWe-d0vXatSvh-hpwPTyh_vOE6JCt4yNrnpX7Tf5f-gbeWomg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Baidus, N. V.</creator><creator>Kukushkin, V. A.</creator><creator>Nekorkin, S. M.</creator><creator>Kruglov, A. V.</creator><creator>Reunov, D. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20190301</creationdate><title>MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons</title><author>Baidus, N. V. ; Kukushkin, V. A. ; Nekorkin, S. M. ; Kruglov, A. V. ; Reunov, D. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-a1c9dd21dc1df1de329493c0d6f3cf42a4c3cb0cf70ecae6540413c10a9815283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DEPOSITION</topic><topic>Diodes</topic><topic>DOPED MATERIALS</topic><topic>Epitaxial growth</topic><topic>EPITAXY</topic><topic>EXCITATION</topic><topic>Gallium arsenide</topic><topic>GALLIUM ARSENIDES</topic><topic>HYDRIDES</topic><topic>INDIUM ARSENIDES</topic><topic>Indium gallium arsenides</topic><topic>LIGHT EMITTING DIODES</topic><topic>Low-Dimensional Systems</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Migration</topic><topic>MOS TRANSISTORS</topic><topic>Organic light emitting diodes</topic><topic>PHOTOLUMINESCENCE</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PLASMONS</topic><topic>Polaritons</topic><topic>POLARIZATION</topic><topic>POLARONS</topic><topic>QUANTUM DOTS</topic><topic>Quantum Phenomena</topic><topic>Schottky diodes</topic><topic>Semiconductor Structures</topic><topic>SPACERS</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baidus, N. V.</creatorcontrib><creatorcontrib>Kukushkin, V. A.</creatorcontrib><creatorcontrib>Nekorkin, S. M.</creatorcontrib><creatorcontrib>Kruglov, A. V.</creatorcontrib><creatorcontrib>Reunov, D. G.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baidus, N. V.</au><au>Kukushkin, V. A.</au><au>Nekorkin, S. M.</au><au>Kruglov, A. V.</au><au>Reunov, D. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>53</volume><issue>3</issue><spage>326</spage><epage>331</epage><pages>326-331</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>The properties of InGaAs/GaAs quantum dots (QDs) grown by MOS-hydride migration-stimulated epitaxy at a reduced pressure using submonolayer deposition are investigated. The wavelength of their photoluminescence at 300 K is in the range of 1.28–1.31 μm and can be controlled by varying the growth temperature and the number of QD-deposition cycles. The highest QD surface density is 3 × 10
10
cm
–2
. Structures with 1–3 QD layers and spacer layers 5–12 nm thick between them are grown. The spacer layers (as well as the cap layers) are selectively doped with carbon (acceptor). It is established that the QD photoluminescence is characterized by an enhanced degree of polarization in the direction orthogonal to the structure plane. This should favor their use for the excitation of surface plasmon–polaritons in Schottky light-emitting diodes.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782619030047</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7826 |
ispartof | Semiconductors (Woodbury, N.Y.), 2019-03, Vol.53 (3), p.326-331 |
issn | 1063-7826 1090-6479 |
language | eng |
recordid | cdi_osti_scitechconnect_22945052 |
source | Springer Link |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DEPOSITION Diodes DOPED MATERIALS Epitaxial growth EPITAXY EXCITATION Gallium arsenide GALLIUM ARSENIDES HYDRIDES INDIUM ARSENIDES Indium gallium arsenides LIGHT EMITTING DIODES Low-Dimensional Systems Magnetic Materials Magnetism Migration MOS TRANSISTORS Organic light emitting diodes PHOTOLUMINESCENCE Physics Physics and Astronomy PLASMONS Polaritons POLARIZATION POLARONS QUANTUM DOTS Quantum Phenomena Schottky diodes Semiconductor Structures SPACERS WAVELENGTHS |
title | MOS-Hydride Epitaxy Growth of InGaAs/GaAs Submonolayer Quantum Dots for the Excitation of Surface Plasmon–Polaritons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOS-Hydride%20Epitaxy%20Growth%20of%20InGaAs/GaAs%20Submonolayer%20Quantum%20Dots%20for%20the%20Excitation%20of%20Surface%20Plasmon%E2%80%93Polaritons&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Baidus,%20N.%20V.&rft.date=2019-03-01&rft.volume=53&rft.issue=3&rft.spage=326&rft.epage=331&rft.pages=326-331&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782619030047&rft_dat=%3Cproquest_osti_%3E2213197293%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-a1c9dd21dc1df1de329493c0d6f3cf42a4c3cb0cf70ecae6540413c10a9815283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2213197293&rft_id=info:pmid/&rfr_iscdi=true |