Loading…
Modeling of dielectric function in plasmonic quantum dot nanolaser
In this work we present a model of the dielectric function in plasmonic quantum dot (QD) nanolaser. A metal/semiconductor/metal structure was considered to attain plasmonic nanocavity with active region containing: QD, wetting layer and barrier. The dielectric function was calculated for both metal...
Saved in:
Published in: | Optical and quantum electronics 2019-12, Vol.51 (12), p.1-13, Article 396 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263 |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263 |
container_end_page | 13 |
container_issue | 12 |
container_start_page | 1 |
container_title | Optical and quantum electronics |
container_volume | 51 |
creator | Jabir, Jamal N. Ameen, S. M. M. Al-Khursan, Amin Habbeb |
description | In this work we present a model of the dielectric function in plasmonic quantum dot (QD) nanolaser. A metal/semiconductor/metal structure was considered to attain plasmonic nanocavity with active region containing: QD, wetting layer and barrier. The dielectric function was calculated for both metal (Ag) and QD structure. The propagation constant of surface plasmon polariton (SPP) at the interface of Ag/InAs-QD structure was calculated and the dispersion relation of the plasmonic QD structure was evaluated. For frequencies far from plasma one, the gap between real and imaginary parts was large and a deviation from linear relation was obvious. The SPP field was strongly localized at the interface due to the effect of zero-dimensional QD structure which has application in the super-resolution and best sensitivity in optical imaging. Results of propagation length of SPP (
L
spp
) also support this. According to the
L
spp
results, the damping in the SPP energy was low in the Ag/InAs-QD compared to that in the Ag/air interface. The obtained results are in the range of experimental ones. |
doi_str_mv | 10.1007/s11082-019-2117-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22950037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316008533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMskl2j1r8gooXBW9hm4-6ZZu0ye7Bf--WFXryNDDzvC_DQ8g1wi0CqLuMCBWjgDVliIrCCZmhUIxWqL5OyQw4SFrVWJ-Ti5w3ACBLATPy8Bat69qwLqIvbOs6Z_rUmsIPwfRtDEUbil3X5G0M43Y_NKEftoWNfRGaEMeDS5fkzDdddld_c04-nx4_Fi90-f78urhfUsPLsqfSlF45zj1zTaNqJ1EYW1bO1xa98Oi5tehWojZ2hUI6KWslvFXKY7NCJvmc3Ey9Mfetzqbtnfk2MYTxZc1YLQC4OlK7FPeDy73exCGF8THNOEqASnA-UjhRJsWck_N6l9ptk340gj4I1ZNQPQrVB6EaxgybMnlkw9qlY_P_oV9HfHhi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316008533</pqid></control><display><type>article</type><title>Modeling of dielectric function in plasmonic quantum dot nanolaser</title><source>Springer Nature</source><creator>Jabir, Jamal N. ; Ameen, S. M. M. ; Al-Khursan, Amin Habbeb</creator><creatorcontrib>Jabir, Jamal N. ; Ameen, S. M. M. ; Al-Khursan, Amin Habbeb</creatorcontrib><description>In this work we present a model of the dielectric function in plasmonic quantum dot (QD) nanolaser. A metal/semiconductor/metal structure was considered to attain plasmonic nanocavity with active region containing: QD, wetting layer and barrier. The dielectric function was calculated for both metal (Ag) and QD structure. The propagation constant of surface plasmon polariton (SPP) at the interface of Ag/InAs-QD structure was calculated and the dispersion relation of the plasmonic QD structure was evaluated. For frequencies far from plasma one, the gap between real and imaginary parts was large and a deviation from linear relation was obvious. The SPP field was strongly localized at the interface due to the effect of zero-dimensional QD structure which has application in the super-resolution and best sensitivity in optical imaging. Results of propagation length of SPP (
L
spp
) also support this. According to the
L
spp
results, the damping in the SPP energy was low in the Ag/InAs-QD compared to that in the Ag/air interface. The obtained results are in the range of experimental ones.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-019-2117-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer Communication Networks ; Damping ; DIELECTRIC MATERIALS ; Dielectrics ; DIFFUSION BARRIERS ; DISPERSION RELATIONS ; DISPERSIONS ; Electrical Engineering ; INDIUM ARSENIDES ; INTERFACES ; Lasers ; LAYERS ; METALS ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; PLASMA ; PLASMONS ; Polaritons ; POLARONS ; Propagation ; QUANTUM DOTS ; RESOLUTION ; SENSITIVITY ; Silver ; SIMULATION ; Wetting</subject><ispartof>Optical and quantum electronics, 2019-12, Vol.51 (12), p.1-13, Article 396</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263</citedby><cites>FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22950037$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jabir, Jamal N.</creatorcontrib><creatorcontrib>Ameen, S. M. M.</creatorcontrib><creatorcontrib>Al-Khursan, Amin Habbeb</creatorcontrib><title>Modeling of dielectric function in plasmonic quantum dot nanolaser</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this work we present a model of the dielectric function in plasmonic quantum dot (QD) nanolaser. A metal/semiconductor/metal structure was considered to attain plasmonic nanocavity with active region containing: QD, wetting layer and barrier. The dielectric function was calculated for both metal (Ag) and QD structure. The propagation constant of surface plasmon polariton (SPP) at the interface of Ag/InAs-QD structure was calculated and the dispersion relation of the plasmonic QD structure was evaluated. For frequencies far from plasma one, the gap between real and imaginary parts was large and a deviation from linear relation was obvious. The SPP field was strongly localized at the interface due to the effect of zero-dimensional QD structure which has application in the super-resolution and best sensitivity in optical imaging. Results of propagation length of SPP (
L
spp
) also support this. According to the
L
spp
results, the damping in the SPP energy was low in the Ag/InAs-QD compared to that in the Ag/air interface. The obtained results are in the range of experimental ones.</description><subject>Characterization and Evaluation of Materials</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer Communication Networks</subject><subject>Damping</subject><subject>DIELECTRIC MATERIALS</subject><subject>Dielectrics</subject><subject>DIFFUSION BARRIERS</subject><subject>DISPERSION RELATIONS</subject><subject>DISPERSIONS</subject><subject>Electrical Engineering</subject><subject>INDIUM ARSENIDES</subject><subject>INTERFACES</subject><subject>Lasers</subject><subject>LAYERS</subject><subject>METALS</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PLASMA</subject><subject>PLASMONS</subject><subject>Polaritons</subject><subject>POLARONS</subject><subject>Propagation</subject><subject>QUANTUM DOTS</subject><subject>RESOLUTION</subject><subject>SENSITIVITY</subject><subject>Silver</subject><subject>SIMULATION</subject><subject>Wetting</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMskl2j1r8gooXBW9hm4-6ZZu0ye7Bf--WFXryNDDzvC_DQ8g1wi0CqLuMCBWjgDVliIrCCZmhUIxWqL5OyQw4SFrVWJ-Ti5w3ACBLATPy8Bat69qwLqIvbOs6Z_rUmsIPwfRtDEUbil3X5G0M43Y_NKEftoWNfRGaEMeDS5fkzDdddld_c04-nx4_Fi90-f78urhfUsPLsqfSlF45zj1zTaNqJ1EYW1bO1xa98Oi5tehWojZ2hUI6KWslvFXKY7NCJvmc3Ey9Mfetzqbtnfk2MYTxZc1YLQC4OlK7FPeDy73exCGF8THNOEqASnA-UjhRJsWck_N6l9ptk340gj4I1ZNQPQrVB6EaxgybMnlkw9qlY_P_oV9HfHhi</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Jabir, Jamal N.</creator><creator>Ameen, S. M. M.</creator><creator>Al-Khursan, Amin Habbeb</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20191201</creationdate><title>Modeling of dielectric function in plasmonic quantum dot nanolaser</title><author>Jabir, Jamal N. ; Ameen, S. M. M. ; Al-Khursan, Amin Habbeb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer Communication Networks</topic><topic>Damping</topic><topic>DIELECTRIC MATERIALS</topic><topic>Dielectrics</topic><topic>DIFFUSION BARRIERS</topic><topic>DISPERSION RELATIONS</topic><topic>DISPERSIONS</topic><topic>Electrical Engineering</topic><topic>INDIUM ARSENIDES</topic><topic>INTERFACES</topic><topic>Lasers</topic><topic>LAYERS</topic><topic>METALS</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PLASMA</topic><topic>PLASMONS</topic><topic>Polaritons</topic><topic>POLARONS</topic><topic>Propagation</topic><topic>QUANTUM DOTS</topic><topic>RESOLUTION</topic><topic>SENSITIVITY</topic><topic>Silver</topic><topic>SIMULATION</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabir, Jamal N.</creatorcontrib><creatorcontrib>Ameen, S. M. M.</creatorcontrib><creatorcontrib>Al-Khursan, Amin Habbeb</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabir, Jamal N.</au><au>Ameen, S. M. M.</au><au>Al-Khursan, Amin Habbeb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of dielectric function in plasmonic quantum dot nanolaser</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>51</volume><issue>12</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>396</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this work we present a model of the dielectric function in plasmonic quantum dot (QD) nanolaser. A metal/semiconductor/metal structure was considered to attain plasmonic nanocavity with active region containing: QD, wetting layer and barrier. The dielectric function was calculated for both metal (Ag) and QD structure. The propagation constant of surface plasmon polariton (SPP) at the interface of Ag/InAs-QD structure was calculated and the dispersion relation of the plasmonic QD structure was evaluated. For frequencies far from plasma one, the gap between real and imaginary parts was large and a deviation from linear relation was obvious. The SPP field was strongly localized at the interface due to the effect of zero-dimensional QD structure which has application in the super-resolution and best sensitivity in optical imaging. Results of propagation length of SPP (
L
spp
) also support this. According to the
L
spp
results, the damping in the SPP energy was low in the Ag/InAs-QD compared to that in the Ag/air interface. The obtained results are in the range of experimental ones.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-019-2117-0</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2019-12, Vol.51 (12), p.1-13, Article 396 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_osti_scitechconnect_22950037 |
source | Springer Nature |
subjects | Characterization and Evaluation of Materials CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computer Communication Networks Damping DIELECTRIC MATERIALS Dielectrics DIFFUSION BARRIERS DISPERSION RELATIONS DISPERSIONS Electrical Engineering INDIUM ARSENIDES INTERFACES Lasers LAYERS METALS Optical Devices Optics Photonics Physics Physics and Astronomy PLASMA PLASMONS Polaritons POLARONS Propagation QUANTUM DOTS RESOLUTION SENSITIVITY Silver SIMULATION Wetting |
title | Modeling of dielectric function in plasmonic quantum dot nanolaser |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20dielectric%20function%20in%20plasmonic%20quantum%20dot%20nanolaser&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Jabir,%20Jamal%20N.&rft.date=2019-12-01&rft.volume=51&rft.issue=12&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=396&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-019-2117-0&rft_dat=%3Cproquest_osti_%3E2316008533%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2316008533&rft_id=info:pmid/&rfr_iscdi=true |