Loading…

Modeling of dielectric function in plasmonic quantum dot nanolaser

In this work we present a model of the dielectric function in plasmonic quantum dot (QD) nanolaser. A metal/semiconductor/metal structure was considered to attain plasmonic nanocavity with active region containing: QD, wetting layer and barrier. The dielectric function was calculated for both metal...

Full description

Saved in:
Bibliographic Details
Published in:Optical and quantum electronics 2019-12, Vol.51 (12), p.1-13, Article 396
Main Authors: Jabir, Jamal N., Ameen, S. M. M., Al-Khursan, Amin Habbeb
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263
cites cdi_FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263
container_end_page 13
container_issue 12
container_start_page 1
container_title Optical and quantum electronics
container_volume 51
creator Jabir, Jamal N.
Ameen, S. M. M.
Al-Khursan, Amin Habbeb
description In this work we present a model of the dielectric function in plasmonic quantum dot (QD) nanolaser. A metal/semiconductor/metal structure was considered to attain plasmonic nanocavity with active region containing: QD, wetting layer and barrier. The dielectric function was calculated for both metal (Ag) and QD structure. The propagation constant of surface plasmon polariton (SPP) at the interface of Ag/InAs-QD structure was calculated and the dispersion relation of the plasmonic QD structure was evaluated. For frequencies far from plasma one, the gap between real and imaginary parts was large and a deviation from linear relation was obvious. The SPP field was strongly localized at the interface due to the effect of zero-dimensional QD structure which has application in the super-resolution and best sensitivity in optical imaging. Results of propagation length of SPP ( L spp ) also support this. According to the L spp results, the damping in the SPP energy was low in the Ag/InAs-QD compared to that in the Ag/air interface. The obtained results are in the range of experimental ones.
doi_str_mv 10.1007/s11082-019-2117-0
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22950037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316008533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMskl2j1r8gooXBW9hm4-6ZZu0ye7Bf--WFXryNDDzvC_DQ8g1wi0CqLuMCBWjgDVliIrCCZmhUIxWqL5OyQw4SFrVWJ-Ti5w3ACBLATPy8Bat69qwLqIvbOs6Z_rUmsIPwfRtDEUbil3X5G0M43Y_NKEftoWNfRGaEMeDS5fkzDdddld_c04-nx4_Fi90-f78urhfUsPLsqfSlF45zj1zTaNqJ1EYW1bO1xa98Oi5tehWojZ2hUI6KWslvFXKY7NCJvmc3Ey9Mfetzqbtnfk2MYTxZc1YLQC4OlK7FPeDy73exCGF8THNOEqASnA-UjhRJsWck_N6l9ptk340gj4I1ZNQPQrVB6EaxgybMnlkw9qlY_P_oV9HfHhi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316008533</pqid></control><display><type>article</type><title>Modeling of dielectric function in plasmonic quantum dot nanolaser</title><source>Springer Nature</source><creator>Jabir, Jamal N. ; Ameen, S. M. M. ; Al-Khursan, Amin Habbeb</creator><creatorcontrib>Jabir, Jamal N. ; Ameen, S. M. M. ; Al-Khursan, Amin Habbeb</creatorcontrib><description>In this work we present a model of the dielectric function in plasmonic quantum dot (QD) nanolaser. A metal/semiconductor/metal structure was considered to attain plasmonic nanocavity with active region containing: QD, wetting layer and barrier. The dielectric function was calculated for both metal (Ag) and QD structure. The propagation constant of surface plasmon polariton (SPP) at the interface of Ag/InAs-QD structure was calculated and the dispersion relation of the plasmonic QD structure was evaluated. For frequencies far from plasma one, the gap between real and imaginary parts was large and a deviation from linear relation was obvious. The SPP field was strongly localized at the interface due to the effect of zero-dimensional QD structure which has application in the super-resolution and best sensitivity in optical imaging. Results of propagation length of SPP ( L spp ) also support this. According to the L spp results, the damping in the SPP energy was low in the Ag/InAs-QD compared to that in the Ag/air interface. The obtained results are in the range of experimental ones.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-019-2117-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer Communication Networks ; Damping ; DIELECTRIC MATERIALS ; Dielectrics ; DIFFUSION BARRIERS ; DISPERSION RELATIONS ; DISPERSIONS ; Electrical Engineering ; INDIUM ARSENIDES ; INTERFACES ; Lasers ; LAYERS ; METALS ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; PLASMA ; PLASMONS ; Polaritons ; POLARONS ; Propagation ; QUANTUM DOTS ; RESOLUTION ; SENSITIVITY ; Silver ; SIMULATION ; Wetting</subject><ispartof>Optical and quantum electronics, 2019-12, Vol.51 (12), p.1-13, Article 396</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263</citedby><cites>FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22950037$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jabir, Jamal N.</creatorcontrib><creatorcontrib>Ameen, S. M. M.</creatorcontrib><creatorcontrib>Al-Khursan, Amin Habbeb</creatorcontrib><title>Modeling of dielectric function in plasmonic quantum dot nanolaser</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this work we present a model of the dielectric function in plasmonic quantum dot (QD) nanolaser. A metal/semiconductor/metal structure was considered to attain plasmonic nanocavity with active region containing: QD, wetting layer and barrier. The dielectric function was calculated for both metal (Ag) and QD structure. The propagation constant of surface plasmon polariton (SPP) at the interface of Ag/InAs-QD structure was calculated and the dispersion relation of the plasmonic QD structure was evaluated. For frequencies far from plasma one, the gap between real and imaginary parts was large and a deviation from linear relation was obvious. The SPP field was strongly localized at the interface due to the effect of zero-dimensional QD structure which has application in the super-resolution and best sensitivity in optical imaging. Results of propagation length of SPP ( L spp ) also support this. According to the L spp results, the damping in the SPP energy was low in the Ag/InAs-QD compared to that in the Ag/air interface. The obtained results are in the range of experimental ones.</description><subject>Characterization and Evaluation of Materials</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer Communication Networks</subject><subject>Damping</subject><subject>DIELECTRIC MATERIALS</subject><subject>Dielectrics</subject><subject>DIFFUSION BARRIERS</subject><subject>DISPERSION RELATIONS</subject><subject>DISPERSIONS</subject><subject>Electrical Engineering</subject><subject>INDIUM ARSENIDES</subject><subject>INTERFACES</subject><subject>Lasers</subject><subject>LAYERS</subject><subject>METALS</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PLASMA</subject><subject>PLASMONS</subject><subject>Polaritons</subject><subject>POLARONS</subject><subject>Propagation</subject><subject>QUANTUM DOTS</subject><subject>RESOLUTION</subject><subject>SENSITIVITY</subject><subject>Silver</subject><subject>SIMULATION</subject><subject>Wetting</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMskl2j1r8gooXBW9hm4-6ZZu0ye7Bf--WFXryNDDzvC_DQ8g1wi0CqLuMCBWjgDVliIrCCZmhUIxWqL5OyQw4SFrVWJ-Ti5w3ACBLATPy8Bat69qwLqIvbOs6Z_rUmsIPwfRtDEUbil3X5G0M43Y_NKEftoWNfRGaEMeDS5fkzDdddld_c04-nx4_Fi90-f78urhfUsPLsqfSlF45zj1zTaNqJ1EYW1bO1xa98Oi5tehWojZ2hUI6KWslvFXKY7NCJvmc3Ey9Mfetzqbtnfk2MYTxZc1YLQC4OlK7FPeDy73exCGF8THNOEqASnA-UjhRJsWck_N6l9ptk340gj4I1ZNQPQrVB6EaxgybMnlkw9qlY_P_oV9HfHhi</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Jabir, Jamal N.</creator><creator>Ameen, S. M. M.</creator><creator>Al-Khursan, Amin Habbeb</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20191201</creationdate><title>Modeling of dielectric function in plasmonic quantum dot nanolaser</title><author>Jabir, Jamal N. ; Ameen, S. M. M. ; Al-Khursan, Amin Habbeb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer Communication Networks</topic><topic>Damping</topic><topic>DIELECTRIC MATERIALS</topic><topic>Dielectrics</topic><topic>DIFFUSION BARRIERS</topic><topic>DISPERSION RELATIONS</topic><topic>DISPERSIONS</topic><topic>Electrical Engineering</topic><topic>INDIUM ARSENIDES</topic><topic>INTERFACES</topic><topic>Lasers</topic><topic>LAYERS</topic><topic>METALS</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PLASMA</topic><topic>PLASMONS</topic><topic>Polaritons</topic><topic>POLARONS</topic><topic>Propagation</topic><topic>QUANTUM DOTS</topic><topic>RESOLUTION</topic><topic>SENSITIVITY</topic><topic>Silver</topic><topic>SIMULATION</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabir, Jamal N.</creatorcontrib><creatorcontrib>Ameen, S. M. M.</creatorcontrib><creatorcontrib>Al-Khursan, Amin Habbeb</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabir, Jamal N.</au><au>Ameen, S. M. M.</au><au>Al-Khursan, Amin Habbeb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of dielectric function in plasmonic quantum dot nanolaser</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>51</volume><issue>12</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>396</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this work we present a model of the dielectric function in plasmonic quantum dot (QD) nanolaser. A metal/semiconductor/metal structure was considered to attain plasmonic nanocavity with active region containing: QD, wetting layer and barrier. The dielectric function was calculated for both metal (Ag) and QD structure. The propagation constant of surface plasmon polariton (SPP) at the interface of Ag/InAs-QD structure was calculated and the dispersion relation of the plasmonic QD structure was evaluated. For frequencies far from plasma one, the gap between real and imaginary parts was large and a deviation from linear relation was obvious. The SPP field was strongly localized at the interface due to the effect of zero-dimensional QD structure which has application in the super-resolution and best sensitivity in optical imaging. Results of propagation length of SPP ( L spp ) also support this. According to the L spp results, the damping in the SPP energy was low in the Ag/InAs-QD compared to that in the Ag/air interface. The obtained results are in the range of experimental ones.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-019-2117-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2019-12, Vol.51 (12), p.1-13, Article 396
issn 0306-8919
1572-817X
language eng
recordid cdi_osti_scitechconnect_22950037
source Springer Nature
subjects Characterization and Evaluation of Materials
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computer Communication Networks
Damping
DIELECTRIC MATERIALS
Dielectrics
DIFFUSION BARRIERS
DISPERSION RELATIONS
DISPERSIONS
Electrical Engineering
INDIUM ARSENIDES
INTERFACES
Lasers
LAYERS
METALS
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
PLASMA
PLASMONS
Polaritons
POLARONS
Propagation
QUANTUM DOTS
RESOLUTION
SENSITIVITY
Silver
SIMULATION
Wetting
title Modeling of dielectric function in plasmonic quantum dot nanolaser
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20dielectric%20function%20in%20plasmonic%20quantum%20dot%20nanolaser&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Jabir,%20Jamal%20N.&rft.date=2019-12-01&rft.volume=51&rft.issue=12&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=396&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-019-2117-0&rft_dat=%3Cproquest_osti_%3E2316008533%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-6c4f7e33f2eaa79e615cd48ef9d1f5f1f3dd1eb59cdb156e66975fd77f1ab1263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2316008533&rft_id=info:pmid/&rfr_iscdi=true