Loading…
A New Method for Deriving Composition of S-type Asteroids from Noisy and Incomplete Near-infrared Spectra
The surface composition of S-type asteroids can be determined using band parameters extracted from their near-infrared (NIR) spectra (0.7–2.50 μ m) along with spectral calibrations derived from laboratory samples. In the past, these empirical equations have been obtained by combining NIR spectra of...
Saved in:
Published in: | The Astronomical journal 2020-04, Vol.159 (4), p.146 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The surface composition of S-type asteroids can be determined using band parameters extracted from their near-infrared (NIR) spectra (0.7–2.50
μ
m) along with spectral calibrations derived from laboratory samples. In the past, these empirical equations have been obtained by combining NIR spectra of meteorite samples with information about their composition and mineral abundance. For these equations to give accurate results, the characteristics of the laboratory spectra they are derived from should be similar to those of asteroid spectral data (i.e., similar signal-to-noise ratio (S/N) and wavelength range). Here we present new spectral calibrations that can be used to determine the mineral composition of ordinary chondrite-like S-type asteroids. Contrary to previous work, the S/N of the ordinary chondrite spectra used in this study has been decreased to recreate the S/N typically observed among asteroid spectra, allowing us to obtain more realistic results. In addition, the new equations have been derived for five wavelength ranges encompassed between 0.7 and 2.50
μ
m, making it possible to determine the composition of asteroids with incomplete data. The new spectral calibrations were tested using band parameters measured from the NIR spectrum of asteroid (25143) Itokawa, and comparing the results with laboratory measurements of the returned samples. We found that the spectrally derived olivine and pyroxene chemistry, which are given by the molar contents of fayalite (Fa) and ferrosilite (Fs), are in excellent agreement with the mean values measured from the samples (Fa
28.6±1.1
and Fs
23.1±2.2
), with a maximum difference of 0.6 mol% for Fa and 1.4 mol% for Fs. |
---|---|
ISSN: | 0004-6256 1538-3881 1538-3881 |
DOI: | 10.3847/1538-3881/ab723f |