Loading…

The impacts of rising vapour pressure deficit in natural and managed ecosystems

An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival....

Full description

Saved in:
Bibliographic Details
Published in:Plant, cell and environment cell and environment, 2024-09, Vol.47 (9), p.3561-3589
Main Authors: Novick, Kimberly A., Ficklin, Darren L., Grossiord, Charlotte, Konings, Alexandra G., Martínez‐Vilalta, Jordi, Sadok, Walid, Trugman, Anna T., Williams, A. Park, Wright, Alexandra J., Abatzoglou, John T., Dannenberg, Matthew P., Gentine, Pierre, Guan, Kaiyu, Johnston, Miriam R., Lowman, Lauren E. L., Moore, David J. P., McDowell, Nate G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4156-4c80c6bdf8343c4586a3988e42294ba69a7451fc9dd5b0ee46ada428ec0cd3143
cites cdi_FETCH-LOGICAL-c4156-4c80c6bdf8343c4586a3988e42294ba69a7451fc9dd5b0ee46ada428ec0cd3143
container_end_page 3589
container_issue 9
container_start_page 3561
container_title Plant, cell and environment
container_volume 47
creator Novick, Kimberly A.
Ficklin, Darren L.
Grossiord, Charlotte
Konings, Alexandra G.
Martínez‐Vilalta, Jordi
Sadok, Walid
Trugman, Anna T.
Williams, A. Park
Wright, Alexandra J.
Abatzoglou, John T.
Dannenberg, Matthew P.
Gentine, Pierre
Guan, Kaiyu
Johnston, Miriam R.
Lowman, Lauren E. L.
Moore, David J. P.
McDowell, Nate G.
description An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. Summary statement Rising atmospheric vapour pressure deficit (or VPD) is one of the most widespread and significant consequences of climate warming for terrestrial ecosystems. This article reviews the mechanistic bases of these usually deleterious impacts and synthesises that information into a set of management recommendations to mitigate them.
doi_str_mv 10.1111/pce.14846
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2301779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926079312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4156-4c80c6bdf8343c4586a3988e42294ba69a7451fc9dd5b0ee46ada428ec0cd3143</originalsourceid><addsrcrecordid>eNp10U1v1DAQBmALgei25cAfQBZcyiHtOHa8zhGtClSqVA7t2fLak9ZV4gRPAtp_jyGFA1J9Gcl69Go-GHsr4FyUdzF5PBfKKP2CbYTUTSVBwUu2AaGg2m5bccSOiR4Byse2fc2OpJHKaAEbdnP7gDwOk_Mz8bHjOVJM9_yHm8Yl8ykj0ZKRB-yijzOPiSc3L9n13KXAB5fcPQaOfqQDzTjQKXvVuZ7wzVM9YXefL293X6vrmy9Xu0_XlVei0ZXyBrzeh640Ir1qjHayNQZVXbdq73TrtqoRnW9DaPaAqLQLTtUGPfgghZIn7P2aO9IcLZXe0D_4MSX0s60liDJ2QWcrmvL4fUGa7RDJY9-7hONCtm5rDcWJutAP_9HHsoBURrASWgkNNAaK-rgqn0eijJ2dchxcPlgB9vcpbDmF_XOKYt89JS77AcM_-Xf3BVys4Gfs8fB8kv22u1wjfwGr9JE0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093050580</pqid></control><display><type>article</type><title>The impacts of rising vapour pressure deficit in natural and managed ecosystems</title><source>Wiley</source><creator>Novick, Kimberly A. ; Ficklin, Darren L. ; Grossiord, Charlotte ; Konings, Alexandra G. ; Martínez‐Vilalta, Jordi ; Sadok, Walid ; Trugman, Anna T. ; Williams, A. Park ; Wright, Alexandra J. ; Abatzoglou, John T. ; Dannenberg, Matthew P. ; Gentine, Pierre ; Guan, Kaiyu ; Johnston, Miriam R. ; Lowman, Lauren E. L. ; Moore, David J. P. ; McDowell, Nate G.</creator><creatorcontrib>Novick, Kimberly A. ; Ficklin, Darren L. ; Grossiord, Charlotte ; Konings, Alexandra G. ; Martínez‐Vilalta, Jordi ; Sadok, Walid ; Trugman, Anna T. ; Williams, A. Park ; Wright, Alexandra J. ; Abatzoglou, John T. ; Dannenberg, Matthew P. ; Gentine, Pierre ; Guan, Kaiyu ; Johnston, Miriam R. ; Lowman, Lauren E. L. ; Moore, David J. P. ; McDowell, Nate G. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. Summary statement Rising atmospheric vapour pressure deficit (or VPD) is one of the most widespread and significant consequences of climate warming for terrestrial ecosystems. This article reviews the mechanistic bases of these usually deleterious impacts and synthesises that information into a set of management recommendations to mitigate them.</description><identifier>ISSN: 0140-7791</identifier><identifier>ISSN: 1365-3040</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.14846</identifier><identifier>PMID: 38348610</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Agricultural land ; Biodiversity ; carbon cycling ; Climate change ; Crop yield ; Drought ; Ecosystem management ; Ecosystem services ; Entanglement ; Environmental changes ; Environmental impact ; Environmental management ; Environmental risk ; ENVIRONMENTAL SCIENCES ; Forest management ; Grasslands ; management ; Moisture content ; Photosynthesis ; plant physiology ; Pressure effects ; Provisioning ; Risk reduction ; Soil water ; Terrestrial ecosystems ; Vapor pressure ; Water resources ; Wildfires</subject><ispartof>Plant, cell and environment, 2024-09, Vol.47 (9), p.3561-3589</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2024 The Authors. Plant, Cell &amp; Environment published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4156-4c80c6bdf8343c4586a3988e42294ba69a7451fc9dd5b0ee46ada428ec0cd3143</citedby><cites>FETCH-LOGICAL-c4156-4c80c6bdf8343c4586a3988e42294ba69a7451fc9dd5b0ee46ada428ec0cd3143</cites><orcidid>0000-0002-9113-3671 ; 0000-0003-2960-7095 ; 0000-0002-8431-0879 ; 0000-0001-9637-2412 ; 0000-0002-2178-2254 ; 0000000291133671 ; 0000000196372412 ; 0000000329607095 ; 0000000221782254 ; 0000000284310879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38348610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2301779$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Novick, Kimberly A.</creatorcontrib><creatorcontrib>Ficklin, Darren L.</creatorcontrib><creatorcontrib>Grossiord, Charlotte</creatorcontrib><creatorcontrib>Konings, Alexandra G.</creatorcontrib><creatorcontrib>Martínez‐Vilalta, Jordi</creatorcontrib><creatorcontrib>Sadok, Walid</creatorcontrib><creatorcontrib>Trugman, Anna T.</creatorcontrib><creatorcontrib>Williams, A. Park</creatorcontrib><creatorcontrib>Wright, Alexandra J.</creatorcontrib><creatorcontrib>Abatzoglou, John T.</creatorcontrib><creatorcontrib>Dannenberg, Matthew P.</creatorcontrib><creatorcontrib>Gentine, Pierre</creatorcontrib><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Johnston, Miriam R.</creatorcontrib><creatorcontrib>Lowman, Lauren E. L.</creatorcontrib><creatorcontrib>Moore, David J. P.</creatorcontrib><creatorcontrib>McDowell, Nate G.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>The impacts of rising vapour pressure deficit in natural and managed ecosystems</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. Summary statement Rising atmospheric vapour pressure deficit (or VPD) is one of the most widespread and significant consequences of climate warming for terrestrial ecosystems. This article reviews the mechanistic bases of these usually deleterious impacts and synthesises that information into a set of management recommendations to mitigate them.</description><subject>Agricultural land</subject><subject>Biodiversity</subject><subject>carbon cycling</subject><subject>Climate change</subject><subject>Crop yield</subject><subject>Drought</subject><subject>Ecosystem management</subject><subject>Ecosystem services</subject><subject>Entanglement</subject><subject>Environmental changes</subject><subject>Environmental impact</subject><subject>Environmental management</subject><subject>Environmental risk</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Forest management</subject><subject>Grasslands</subject><subject>management</subject><subject>Moisture content</subject><subject>Photosynthesis</subject><subject>plant physiology</subject><subject>Pressure effects</subject><subject>Provisioning</subject><subject>Risk reduction</subject><subject>Soil water</subject><subject>Terrestrial ecosystems</subject><subject>Vapor pressure</subject><subject>Water resources</subject><subject>Wildfires</subject><issn>0140-7791</issn><issn>1365-3040</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10U1v1DAQBmALgei25cAfQBZcyiHtOHa8zhGtClSqVA7t2fLak9ZV4gRPAtp_jyGFA1J9Gcl69Go-GHsr4FyUdzF5PBfKKP2CbYTUTSVBwUu2AaGg2m5bccSOiR4Byse2fc2OpJHKaAEbdnP7gDwOk_Mz8bHjOVJM9_yHm8Yl8ykj0ZKRB-yijzOPiSc3L9n13KXAB5fcPQaOfqQDzTjQKXvVuZ7wzVM9YXefL293X6vrmy9Xu0_XlVei0ZXyBrzeh640Ir1qjHayNQZVXbdq73TrtqoRnW9DaPaAqLQLTtUGPfgghZIn7P2aO9IcLZXe0D_4MSX0s60liDJ2QWcrmvL4fUGa7RDJY9-7hONCtm5rDcWJutAP_9HHsoBURrASWgkNNAaK-rgqn0eijJ2dchxcPlgB9vcpbDmF_XOKYt89JS77AcM_-Xf3BVys4Gfs8fB8kv22u1wjfwGr9JE0</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Novick, Kimberly A.</creator><creator>Ficklin, Darren L.</creator><creator>Grossiord, Charlotte</creator><creator>Konings, Alexandra G.</creator><creator>Martínez‐Vilalta, Jordi</creator><creator>Sadok, Walid</creator><creator>Trugman, Anna T.</creator><creator>Williams, A. Park</creator><creator>Wright, Alexandra J.</creator><creator>Abatzoglou, John T.</creator><creator>Dannenberg, Matthew P.</creator><creator>Gentine, Pierre</creator><creator>Guan, Kaiyu</creator><creator>Johnston, Miriam R.</creator><creator>Lowman, Lauren E. L.</creator><creator>Moore, David J. P.</creator><creator>McDowell, Nate G.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9113-3671</orcidid><orcidid>https://orcid.org/0000-0003-2960-7095</orcidid><orcidid>https://orcid.org/0000-0002-8431-0879</orcidid><orcidid>https://orcid.org/0000-0001-9637-2412</orcidid><orcidid>https://orcid.org/0000-0002-2178-2254</orcidid><orcidid>https://orcid.org/0000000291133671</orcidid><orcidid>https://orcid.org/0000000196372412</orcidid><orcidid>https://orcid.org/0000000329607095</orcidid><orcidid>https://orcid.org/0000000221782254</orcidid><orcidid>https://orcid.org/0000000284310879</orcidid></search><sort><creationdate>202409</creationdate><title>The impacts of rising vapour pressure deficit in natural and managed ecosystems</title><author>Novick, Kimberly A. ; Ficklin, Darren L. ; Grossiord, Charlotte ; Konings, Alexandra G. ; Martínez‐Vilalta, Jordi ; Sadok, Walid ; Trugman, Anna T. ; Williams, A. Park ; Wright, Alexandra J. ; Abatzoglou, John T. ; Dannenberg, Matthew P. ; Gentine, Pierre ; Guan, Kaiyu ; Johnston, Miriam R. ; Lowman, Lauren E. L. ; Moore, David J. P. ; McDowell, Nate G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4156-4c80c6bdf8343c4586a3988e42294ba69a7451fc9dd5b0ee46ada428ec0cd3143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural land</topic><topic>Biodiversity</topic><topic>carbon cycling</topic><topic>Climate change</topic><topic>Crop yield</topic><topic>Drought</topic><topic>Ecosystem management</topic><topic>Ecosystem services</topic><topic>Entanglement</topic><topic>Environmental changes</topic><topic>Environmental impact</topic><topic>Environmental management</topic><topic>Environmental risk</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Forest management</topic><topic>Grasslands</topic><topic>management</topic><topic>Moisture content</topic><topic>Photosynthesis</topic><topic>plant physiology</topic><topic>Pressure effects</topic><topic>Provisioning</topic><topic>Risk reduction</topic><topic>Soil water</topic><topic>Terrestrial ecosystems</topic><topic>Vapor pressure</topic><topic>Water resources</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Novick, Kimberly A.</creatorcontrib><creatorcontrib>Ficklin, Darren L.</creatorcontrib><creatorcontrib>Grossiord, Charlotte</creatorcontrib><creatorcontrib>Konings, Alexandra G.</creatorcontrib><creatorcontrib>Martínez‐Vilalta, Jordi</creatorcontrib><creatorcontrib>Sadok, Walid</creatorcontrib><creatorcontrib>Trugman, Anna T.</creatorcontrib><creatorcontrib>Williams, A. Park</creatorcontrib><creatorcontrib>Wright, Alexandra J.</creatorcontrib><creatorcontrib>Abatzoglou, John T.</creatorcontrib><creatorcontrib>Dannenberg, Matthew P.</creatorcontrib><creatorcontrib>Gentine, Pierre</creatorcontrib><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Johnston, Miriam R.</creatorcontrib><creatorcontrib>Lowman, Lauren E. L.</creatorcontrib><creatorcontrib>Moore, David J. P.</creatorcontrib><creatorcontrib>McDowell, Nate G.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Novick, Kimberly A.</au><au>Ficklin, Darren L.</au><au>Grossiord, Charlotte</au><au>Konings, Alexandra G.</au><au>Martínez‐Vilalta, Jordi</au><au>Sadok, Walid</au><au>Trugman, Anna T.</au><au>Williams, A. Park</au><au>Wright, Alexandra J.</au><au>Abatzoglou, John T.</au><au>Dannenberg, Matthew P.</au><au>Gentine, Pierre</au><au>Guan, Kaiyu</au><au>Johnston, Miriam R.</au><au>Lowman, Lauren E. L.</au><au>Moore, David J. P.</au><au>McDowell, Nate G.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impacts of rising vapour pressure deficit in natural and managed ecosystems</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2024-09</date><risdate>2024</risdate><volume>47</volume><issue>9</issue><spage>3561</spage><epage>3589</epage><pages>3561-3589</pages><issn>0140-7791</issn><issn>1365-3040</issn><eissn>1365-3040</eissn><abstract>An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. Summary statement Rising atmospheric vapour pressure deficit (or VPD) is one of the most widespread and significant consequences of climate warming for terrestrial ecosystems. This article reviews the mechanistic bases of these usually deleterious impacts and synthesises that information into a set of management recommendations to mitigate them.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38348610</pmid><doi>10.1111/pce.14846</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-9113-3671</orcidid><orcidid>https://orcid.org/0000-0003-2960-7095</orcidid><orcidid>https://orcid.org/0000-0002-8431-0879</orcidid><orcidid>https://orcid.org/0000-0001-9637-2412</orcidid><orcidid>https://orcid.org/0000-0002-2178-2254</orcidid><orcidid>https://orcid.org/0000000291133671</orcidid><orcidid>https://orcid.org/0000000196372412</orcidid><orcidid>https://orcid.org/0000000329607095</orcidid><orcidid>https://orcid.org/0000000221782254</orcidid><orcidid>https://orcid.org/0000000284310879</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-7791
ispartof Plant, cell and environment, 2024-09, Vol.47 (9), p.3561-3589
issn 0140-7791
1365-3040
1365-3040
language eng
recordid cdi_osti_scitechconnect_2301779
source Wiley
subjects Agricultural land
Biodiversity
carbon cycling
Climate change
Crop yield
Drought
Ecosystem management
Ecosystem services
Entanglement
Environmental changes
Environmental impact
Environmental management
Environmental risk
ENVIRONMENTAL SCIENCES
Forest management
Grasslands
management
Moisture content
Photosynthesis
plant physiology
Pressure effects
Provisioning
Risk reduction
Soil water
Terrestrial ecosystems
Vapor pressure
Water resources
Wildfires
title The impacts of rising vapour pressure deficit in natural and managed ecosystems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impacts%20of%20rising%20vapour%20pressure%20deficit%20in%20natural%20and%20managed%20ecosystems&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Novick,%20Kimberly%20A.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-09&rft.volume=47&rft.issue=9&rft.spage=3561&rft.epage=3589&rft.pages=3561-3589&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.14846&rft_dat=%3Cproquest_osti_%3E2926079312%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4156-4c80c6bdf8343c4586a3988e42294ba69a7451fc9dd5b0ee46ada428ec0cd3143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093050580&rft_id=info:pmid/38348610&rfr_iscdi=true