Loading…

Oxicam-derived non-steroidal anti-inflammatory drugs suppress 1-methyl-4-phenyl pyridinium-induced cell death via repression of endoplasmic reticulum stress response and mitochondrial dysfunction in SH-SY5Y cells

We have previously reported that oxicam-derived non-steroidal anti-inflammatory drugs (oxicam-NSAIDs), including meloxicam, piroxicam and tenoxicam, elicit protective effects against 1-methyl-4-phenyl pyridinium (MPP+)-induced cell death in a fashion independent of cyclooxygenase (COX) inhibition. W...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2018-09, Vol.503 (4), p.2963-2969
Main Authors: Omura, Tomohiro, Sasaoka, Miwa, Hashimoto, Gaia, Imai, Satoshi, Yamamoto, Joe, Sato, Yuki, Nakagawa, Shunsaku, Yonezawa, Atsushi, Nakagawa, Takayuki, Yano, Ikuko, Tasaki, Yoshikazu, Matsubara, Kazuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have previously reported that oxicam-derived non-steroidal anti-inflammatory drugs (oxicam-NSAIDs), including meloxicam, piroxicam and tenoxicam, elicit protective effects against 1-methyl-4-phenyl pyridinium (MPP+)-induced cell death in a fashion independent of cyclooxygenase (COX) inhibition. We have also demonstrated that oxicam-NSAIDs suppress the decrease in phosphorylation of Akt caused by MPP+. The molecular mechanism through which oxicam-NSAIDs provide cytoprotection remains unclear. In this study, we speculated a possibility that endoplasmic reticulum (ER) stress and/or mitochondrial dysfunction, which are both causative factors of Parkinson's disease (PD), may be involved in the neuroprotective mechanism of oxicam-NSAIDs. We demonstrated here that oxicam-NSAIDs suppressed the activation of caspase-3 and cell death caused by MPP+ or ER stress-inducer, tunicamycin, in SH-SY5Y cells. Furthermore, oxicam-NSAIDs suppressed the increases in the ER stress marker CHOP (apoptosis mediator) caused by MPP+ or tunicamycin, beside suppressing eukaryotic initiation factor 2α (eIF2α) phosphorylation and the increase in ATF4 caused by MPP+. Taken together, these results suggest that oxicam-NSAIDs suppress the eIF2α-ATF4-CHOP pathway, one of the three signaling pathways in the ER stress response. Oxicam-NSAIDs suppressed the decrease in mitochondrial membrane potential depolarization caused by MPP+, indicating they also rescue cells from mitochondrial dysfunction. Akt phosphorylation levels were suppressed after the incubation with MPP+, whereas phosphorylation of eIF2α was enhanced. These results suggest that oxicam-NSAIDs prevented eIF2α phosphorylation and mitochondrial dysfunction by maintaining Akt phosphorylation (reduced by MPP+), thereby preventing cell death. •Oxicam-NSAIDs suppress cell death caused by the ER stress-inducer.•Oxicam-NSAIDs inhibit MPP+-induced cell death caused by the repression of ER stress response and mitochondrial dysfunction.•Oxicam-NSAIDs may inhibit the increase of eIF2a phosphorylation by suppressing the decrease of Akt phosphorylation by MPP+.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2018.08.078