Loading…
First simultaneous global QCD analysis of dihadron fragmentation functions and transversity parton distribution functions
We perform a comprehensive study within quantum chromodynamics (QCD) of dihadron observables in electron-positron annihilation, semi-inclusive deep-inelastic scattering, and proton-proton collisions, including recent cross section data from Belle and azimuthal asymmetries from STAR. We extract simul...
Saved in:
Published in: | Physical review. D 2024-02, Vol.109 (3), Article 034024 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We perform a comprehensive study within quantum chromodynamics (QCD) of dihadron observables in electron-positron annihilation, semi-inclusive deep-inelastic scattering, and proton-proton collisions, including recent cross section data from Belle and azimuthal asymmetries from STAR. We extract simultaneously for the first time π + π − dihadron fragmentation functions (DiFFs) and the nucleon transversity distributions for up and down quarks as well as antiquarks. For the transversity distributions we impose their small- x asymptotic behavior and the Soffer bound. In addition, we utilize a new definition of DiFFs that has a number density interpretation to then calculate expectation values for the dihadron invariant mass and momentum fraction. Furthermore, we investigate the compatibility of our transversity results with those from single-hadron fragmentation (from a transverse momentum dependent/collinear twist-3 framework) and the nucleon tensor charges computed in lattice QCD. We find a universal nature to all of this available information. Future measurements of dihadron production can significantly further this research, especially, as we show, those that are sensitive to the region of large parton momentum fractions. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.109.034024 |