Loading…

Asymmetric Rowland circle geometries for spherically bent crystal analyzers in laboratory and synchrotron applications

Spherically bent crystal analyzers (SBCAs) are the dominant high-resolution hard X-ray optic in the ongoing rebirth of laboratory-based X-ray absorption fine structure (XAFS) and X-ray emission spectroscopy (XES) as well as in synchrotron methods such as high energy resolution fluorescence detection...

Full description

Saved in:
Bibliographic Details
Published in:Journal of analytical atomic spectrometry 2024-05, Vol.39 (5), p.1375-1387
Main Authors: Gironda, Anthony J, Abramson, Jared E, Chen, Yeu, Solovyev, Mikhail, Sterbinsky, George E, Seidler, Gerald T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c267t-82bd20c6202553670270416c5b270f2b03ddadd964266a9b28d6a081cbdab46d3
container_end_page 1387
container_issue 5
container_start_page 1375
container_title Journal of analytical atomic spectrometry
container_volume 39
creator Gironda, Anthony J
Abramson, Jared E
Chen, Yeu
Solovyev, Mikhail
Sterbinsky, George E
Seidler, Gerald T
description Spherically bent crystal analyzers (SBCAs) are the dominant high-resolution hard X-ray optic in the ongoing rebirth of laboratory-based X-ray absorption fine structure (XAFS) and X-ray emission spectroscopy (XES) as well as in synchrotron methods such as high energy resolution fluorescence detection (HERFD) and non-resonant X-ray Raman scattering (XRS). In the overwhelming majority of cases, SBCAs are implemented in a 'symmetric' configuration on the Rowland circle, wherein the diffracting crystal plane is nominally coincident with the analyzer surface. We report here comprehensive investigations of 'asymmetric' operation of SBCA on the Rowland circle, wherein the diffracting crystal plane is not coincident with the optical surface of the analyzer. First, we have developed a laboratory spectrometer for XAFS and XES that is specialized for asymmetric SBCA operation. We find several benefits, including the capacity to use a single SBCA over a very wide energy range via ' hkl hopping' and the frequent ability to eliminate Johann error, the most prevalent energy-broadening mechanism when using SBCA symmetrically on the Rowland circle. Second, we expand these ideas to synchrotron facilities with a demonstration study of HERFD and XRS where asymmetric operation also provided advantage. Our results suggest that large-array systems for HERFD augmented with an additional mechanical degree of freedom could streamline user operation and also indicate benefits to XRS in the asymmetric configuration, where larger solid angle, larger sample-to-detector distance, and decreased Johann error can be achieved simultaneously. We show that asymmetric operation of spherically bent crystal analyzers is an underutilized opportunity that can improve x-ray spectrometer performance and user operations in both the laboratory and synchrotron environments.
doi_str_mv 10.1039/d3ja00437f
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2324722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3052375026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-82bd20c6202553670270416c5b270f2b03ddadd964266a9b28d6a081cbdab46d3</originalsourceid><addsrcrecordid>eNpF0UtLxDAQB_AgCq6Pi3ch6E2opnl197j4FkEQPZc0Sd0u2aRmskr99Gat6CmB-WWY-Qeho5Kcl4TNLgxbKkI4q9otNCmZ5IUQnG-jCaGyKma8qnbRHsCSZCSomKCPOQyrlU2x0_g5fDrlDdZd1M7iNxt-ChZwGyKGfmGzUs4NuLE-YR0HSMph5ZUbvmwE3HnsVBOiSiEOeNMKBq8XMaQYPFZ97_L71AUPB2inVQ7s4e-5j15vrl8u74rHp9v7y_ljofO8qZjSxlCiJSVUCCYrQivCS6lFky8tbQgzRhkzk5xKqWYNnRqpyLTUjVENl4bto5Oxb4DU1aC7ZPVCB--tTjVllFeUZnQ6oj6G97WFVC_DOuatoGZEUFaJnF5WZ6PSMQBE29Z97FYqDnVJ6k349RV7mP-Ef5Px8Ygj6D_3_znsG9B5grw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052375026</pqid></control><display><type>article</type><title>Asymmetric Rowland circle geometries for spherically bent crystal analyzers in laboratory and synchrotron applications</title><source>Royal Society of Chemistry Journals</source><creator>Gironda, Anthony J ; Abramson, Jared E ; Chen, Yeu ; Solovyev, Mikhail ; Sterbinsky, George E ; Seidler, Gerald T</creator><creatorcontrib>Gironda, Anthony J ; Abramson, Jared E ; Chen, Yeu ; Solovyev, Mikhail ; Sterbinsky, George E ; Seidler, Gerald T</creatorcontrib><description>Spherically bent crystal analyzers (SBCAs) are the dominant high-resolution hard X-ray optic in the ongoing rebirth of laboratory-based X-ray absorption fine structure (XAFS) and X-ray emission spectroscopy (XES) as well as in synchrotron methods such as high energy resolution fluorescence detection (HERFD) and non-resonant X-ray Raman scattering (XRS). In the overwhelming majority of cases, SBCAs are implemented in a 'symmetric' configuration on the Rowland circle, wherein the diffracting crystal plane is nominally coincident with the analyzer surface. We report here comprehensive investigations of 'asymmetric' operation of SBCA on the Rowland circle, wherein the diffracting crystal plane is not coincident with the optical surface of the analyzer. First, we have developed a laboratory spectrometer for XAFS and XES that is specialized for asymmetric SBCA operation. We find several benefits, including the capacity to use a single SBCA over a very wide energy range via ' hkl hopping' and the frequent ability to eliminate Johann error, the most prevalent energy-broadening mechanism when using SBCA symmetrically on the Rowland circle. Second, we expand these ideas to synchrotron facilities with a demonstration study of HERFD and XRS where asymmetric operation also provided advantage. Our results suggest that large-array systems for HERFD augmented with an additional mechanical degree of freedom could streamline user operation and also indicate benefits to XRS in the asymmetric configuration, where larger solid angle, larger sample-to-detector distance, and decreased Johann error can be achieved simultaneously. We show that asymmetric operation of spherically bent crystal analyzers is an underutilized opportunity that can improve x-ray spectrometer performance and user operations in both the laboratory and synchrotron environments.</description><identifier>ISSN: 0267-9477</identifier><identifier>EISSN: 1364-5544</identifier><identifier>DOI: 10.1039/d3ja00437f</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Analyzers ; Asymmetry ; Configurations ; Crystals ; Emission ; Energy resolution ; Fine structure ; Raman spectra ; Rowland circles ; X ray absorption</subject><ispartof>Journal of analytical atomic spectrometry, 2024-05, Vol.39 (5), p.1375-1387</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c267t-82bd20c6202553670270416c5b270f2b03ddadd964266a9b28d6a081cbdab46d3</cites><orcidid>0000-0002-1451-5035 ; 0000-0001-6738-7930 ; 0000-0003-3862-6896 ; 0000000167387930 ; 0000000214515035 ; 0000000338626896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2324722$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gironda, Anthony J</creatorcontrib><creatorcontrib>Abramson, Jared E</creatorcontrib><creatorcontrib>Chen, Yeu</creatorcontrib><creatorcontrib>Solovyev, Mikhail</creatorcontrib><creatorcontrib>Sterbinsky, George E</creatorcontrib><creatorcontrib>Seidler, Gerald T</creatorcontrib><title>Asymmetric Rowland circle geometries for spherically bent crystal analyzers in laboratory and synchrotron applications</title><title>Journal of analytical atomic spectrometry</title><description>Spherically bent crystal analyzers (SBCAs) are the dominant high-resolution hard X-ray optic in the ongoing rebirth of laboratory-based X-ray absorption fine structure (XAFS) and X-ray emission spectroscopy (XES) as well as in synchrotron methods such as high energy resolution fluorescence detection (HERFD) and non-resonant X-ray Raman scattering (XRS). In the overwhelming majority of cases, SBCAs are implemented in a 'symmetric' configuration on the Rowland circle, wherein the diffracting crystal plane is nominally coincident with the analyzer surface. We report here comprehensive investigations of 'asymmetric' operation of SBCA on the Rowland circle, wherein the diffracting crystal plane is not coincident with the optical surface of the analyzer. First, we have developed a laboratory spectrometer for XAFS and XES that is specialized for asymmetric SBCA operation. We find several benefits, including the capacity to use a single SBCA over a very wide energy range via ' hkl hopping' and the frequent ability to eliminate Johann error, the most prevalent energy-broadening mechanism when using SBCA symmetrically on the Rowland circle. Second, we expand these ideas to synchrotron facilities with a demonstration study of HERFD and XRS where asymmetric operation also provided advantage. Our results suggest that large-array systems for HERFD augmented with an additional mechanical degree of freedom could streamline user operation and also indicate benefits to XRS in the asymmetric configuration, where larger solid angle, larger sample-to-detector distance, and decreased Johann error can be achieved simultaneously. We show that asymmetric operation of spherically bent crystal analyzers is an underutilized opportunity that can improve x-ray spectrometer performance and user operations in both the laboratory and synchrotron environments.</description><subject>Analyzers</subject><subject>Asymmetry</subject><subject>Configurations</subject><subject>Crystals</subject><subject>Emission</subject><subject>Energy resolution</subject><subject>Fine structure</subject><subject>Raman spectra</subject><subject>Rowland circles</subject><subject>X ray absorption</subject><issn>0267-9477</issn><issn>1364-5544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpF0UtLxDAQB_AgCq6Pi3ch6E2opnl197j4FkEQPZc0Sd0u2aRmskr99Gat6CmB-WWY-Qeho5Kcl4TNLgxbKkI4q9otNCmZ5IUQnG-jCaGyKma8qnbRHsCSZCSomKCPOQyrlU2x0_g5fDrlDdZd1M7iNxt-ChZwGyKGfmGzUs4NuLE-YR0HSMph5ZUbvmwE3HnsVBOiSiEOeNMKBq8XMaQYPFZ97_L71AUPB2inVQ7s4e-5j15vrl8u74rHp9v7y_ljofO8qZjSxlCiJSVUCCYrQivCS6lFky8tbQgzRhkzk5xKqWYNnRqpyLTUjVENl4bto5Oxb4DU1aC7ZPVCB--tTjVllFeUZnQ6oj6G97WFVC_DOuatoGZEUFaJnF5WZ6PSMQBE29Z97FYqDnVJ6k349RV7mP-Ef5Px8Ygj6D_3_znsG9B5grw</recordid><startdate>20240509</startdate><enddate>20240509</enddate><creator>Gironda, Anthony J</creator><creator>Abramson, Jared E</creator><creator>Chen, Yeu</creator><creator>Solovyev, Mikhail</creator><creator>Sterbinsky, George E</creator><creator>Seidler, Gerald T</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1451-5035</orcidid><orcidid>https://orcid.org/0000-0001-6738-7930</orcidid><orcidid>https://orcid.org/0000-0003-3862-6896</orcidid><orcidid>https://orcid.org/0000000167387930</orcidid><orcidid>https://orcid.org/0000000214515035</orcidid><orcidid>https://orcid.org/0000000338626896</orcidid></search><sort><creationdate>20240509</creationdate><title>Asymmetric Rowland circle geometries for spherically bent crystal analyzers in laboratory and synchrotron applications</title><author>Gironda, Anthony J ; Abramson, Jared E ; Chen, Yeu ; Solovyev, Mikhail ; Sterbinsky, George E ; Seidler, Gerald T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-82bd20c6202553670270416c5b270f2b03ddadd964266a9b28d6a081cbdab46d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analyzers</topic><topic>Asymmetry</topic><topic>Configurations</topic><topic>Crystals</topic><topic>Emission</topic><topic>Energy resolution</topic><topic>Fine structure</topic><topic>Raman spectra</topic><topic>Rowland circles</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gironda, Anthony J</creatorcontrib><creatorcontrib>Abramson, Jared E</creatorcontrib><creatorcontrib>Chen, Yeu</creatorcontrib><creatorcontrib>Solovyev, Mikhail</creatorcontrib><creatorcontrib>Sterbinsky, George E</creatorcontrib><creatorcontrib>Seidler, Gerald T</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of analytical atomic spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gironda, Anthony J</au><au>Abramson, Jared E</au><au>Chen, Yeu</au><au>Solovyev, Mikhail</au><au>Sterbinsky, George E</au><au>Seidler, Gerald T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Rowland circle geometries for spherically bent crystal analyzers in laboratory and synchrotron applications</atitle><jtitle>Journal of analytical atomic spectrometry</jtitle><date>2024-05-09</date><risdate>2024</risdate><volume>39</volume><issue>5</issue><spage>1375</spage><epage>1387</epage><pages>1375-1387</pages><issn>0267-9477</issn><eissn>1364-5544</eissn><abstract>Spherically bent crystal analyzers (SBCAs) are the dominant high-resolution hard X-ray optic in the ongoing rebirth of laboratory-based X-ray absorption fine structure (XAFS) and X-ray emission spectroscopy (XES) as well as in synchrotron methods such as high energy resolution fluorescence detection (HERFD) and non-resonant X-ray Raman scattering (XRS). In the overwhelming majority of cases, SBCAs are implemented in a 'symmetric' configuration on the Rowland circle, wherein the diffracting crystal plane is nominally coincident with the analyzer surface. We report here comprehensive investigations of 'asymmetric' operation of SBCA on the Rowland circle, wherein the diffracting crystal plane is not coincident with the optical surface of the analyzer. First, we have developed a laboratory spectrometer for XAFS and XES that is specialized for asymmetric SBCA operation. We find several benefits, including the capacity to use a single SBCA over a very wide energy range via ' hkl hopping' and the frequent ability to eliminate Johann error, the most prevalent energy-broadening mechanism when using SBCA symmetrically on the Rowland circle. Second, we expand these ideas to synchrotron facilities with a demonstration study of HERFD and XRS where asymmetric operation also provided advantage. Our results suggest that large-array systems for HERFD augmented with an additional mechanical degree of freedom could streamline user operation and also indicate benefits to XRS in the asymmetric configuration, where larger solid angle, larger sample-to-detector distance, and decreased Johann error can be achieved simultaneously. We show that asymmetric operation of spherically bent crystal analyzers is an underutilized opportunity that can improve x-ray spectrometer performance and user operations in both the laboratory and synchrotron environments.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ja00437f</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1451-5035</orcidid><orcidid>https://orcid.org/0000-0001-6738-7930</orcidid><orcidid>https://orcid.org/0000-0003-3862-6896</orcidid><orcidid>https://orcid.org/0000000167387930</orcidid><orcidid>https://orcid.org/0000000214515035</orcidid><orcidid>https://orcid.org/0000000338626896</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0267-9477
ispartof Journal of analytical atomic spectrometry, 2024-05, Vol.39 (5), p.1375-1387
issn 0267-9477
1364-5544
language eng
recordid cdi_osti_scitechconnect_2324722
source Royal Society of Chemistry Journals
subjects Analyzers
Asymmetry
Configurations
Crystals
Emission
Energy resolution
Fine structure
Raman spectra
Rowland circles
X ray absorption
title Asymmetric Rowland circle geometries for spherically bent crystal analyzers in laboratory and synchrotron applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Rowland%20circle%20geometries%20for%20spherically%20bent%20crystal%20analyzers%20in%20laboratory%20and%20synchrotron%20applications&rft.jtitle=Journal%20of%20analytical%20atomic%20spectrometry&rft.au=Gironda,%20Anthony%20J&rft.date=2024-05-09&rft.volume=39&rft.issue=5&rft.spage=1375&rft.epage=1387&rft.pages=1375-1387&rft.issn=0267-9477&rft.eissn=1364-5544&rft_id=info:doi/10.1039/d3ja00437f&rft_dat=%3Cproquest_osti_%3E3052375026%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-82bd20c6202553670270416c5b270f2b03ddadd964266a9b28d6a081cbdab46d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3052375026&rft_id=info:pmid/&rfr_iscdi=true