Loading…
Asymmetric Rowland circle geometries for spherically bent crystal analyzers in laboratory and synchrotron applications
Spherically bent crystal analyzers (SBCAs) are the dominant high-resolution hard X-ray optic in the ongoing rebirth of laboratory-based X-ray absorption fine structure (XAFS) and X-ray emission spectroscopy (XES) as well as in synchrotron methods such as high energy resolution fluorescence detection...
Saved in:
Published in: | Journal of analytical atomic spectrometry 2024-05, Vol.39 (5), p.1375-1387 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c267t-82bd20c6202553670270416c5b270f2b03ddadd964266a9b28d6a081cbdab46d3 |
container_end_page | 1387 |
container_issue | 5 |
container_start_page | 1375 |
container_title | Journal of analytical atomic spectrometry |
container_volume | 39 |
creator | Gironda, Anthony J Abramson, Jared E Chen, Yeu Solovyev, Mikhail Sterbinsky, George E Seidler, Gerald T |
description | Spherically bent crystal analyzers (SBCAs) are the dominant high-resolution hard X-ray optic in the ongoing rebirth of laboratory-based X-ray absorption fine structure (XAFS) and X-ray emission spectroscopy (XES) as well as in synchrotron methods such as high energy resolution fluorescence detection (HERFD) and non-resonant X-ray Raman scattering (XRS). In the overwhelming majority of cases, SBCAs are implemented in a 'symmetric' configuration on the Rowland circle, wherein the diffracting crystal plane is nominally coincident with the analyzer surface. We report here comprehensive investigations of 'asymmetric' operation of SBCA on the Rowland circle, wherein the diffracting crystal plane is not coincident with the optical surface of the analyzer. First, we have developed a laboratory spectrometer for XAFS and XES that is specialized for asymmetric SBCA operation. We find several benefits, including the capacity to use a single SBCA over a very wide energy range
via
'
hkl
hopping' and the frequent ability to eliminate Johann error, the most prevalent energy-broadening mechanism when using SBCA symmetrically on the Rowland circle. Second, we expand these ideas to synchrotron facilities with a demonstration study of HERFD and XRS where asymmetric operation also provided advantage. Our results suggest that large-array systems for HERFD augmented with an additional mechanical degree of freedom could streamline user operation and also indicate benefits to XRS in the asymmetric configuration, where larger solid angle, larger sample-to-detector distance, and decreased Johann error can be achieved simultaneously.
We show that asymmetric operation of spherically bent crystal analyzers is an underutilized opportunity that can improve x-ray spectrometer performance and user operations in both the laboratory and synchrotron environments. |
doi_str_mv | 10.1039/d3ja00437f |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2324722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3052375026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-82bd20c6202553670270416c5b270f2b03ddadd964266a9b28d6a081cbdab46d3</originalsourceid><addsrcrecordid>eNpF0UtLxDAQB_AgCq6Pi3ch6E2opnl197j4FkEQPZc0Sd0u2aRmskr99Gat6CmB-WWY-Qeho5Kcl4TNLgxbKkI4q9otNCmZ5IUQnG-jCaGyKma8qnbRHsCSZCSomKCPOQyrlU2x0_g5fDrlDdZd1M7iNxt-ChZwGyKGfmGzUs4NuLE-YR0HSMph5ZUbvmwE3HnsVBOiSiEOeNMKBq8XMaQYPFZ97_L71AUPB2inVQ7s4e-5j15vrl8u74rHp9v7y_ljofO8qZjSxlCiJSVUCCYrQivCS6lFky8tbQgzRhkzk5xKqWYNnRqpyLTUjVENl4bto5Oxb4DU1aC7ZPVCB--tTjVllFeUZnQ6oj6G97WFVC_DOuatoGZEUFaJnF5WZ6PSMQBE29Z97FYqDnVJ6k349RV7mP-Ef5Px8Ygj6D_3_znsG9B5grw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052375026</pqid></control><display><type>article</type><title>Asymmetric Rowland circle geometries for spherically bent crystal analyzers in laboratory and synchrotron applications</title><source>Royal Society of Chemistry Journals</source><creator>Gironda, Anthony J ; Abramson, Jared E ; Chen, Yeu ; Solovyev, Mikhail ; Sterbinsky, George E ; Seidler, Gerald T</creator><creatorcontrib>Gironda, Anthony J ; Abramson, Jared E ; Chen, Yeu ; Solovyev, Mikhail ; Sterbinsky, George E ; Seidler, Gerald T</creatorcontrib><description>Spherically bent crystal analyzers (SBCAs) are the dominant high-resolution hard X-ray optic in the ongoing rebirth of laboratory-based X-ray absorption fine structure (XAFS) and X-ray emission spectroscopy (XES) as well as in synchrotron methods such as high energy resolution fluorescence detection (HERFD) and non-resonant X-ray Raman scattering (XRS). In the overwhelming majority of cases, SBCAs are implemented in a 'symmetric' configuration on the Rowland circle, wherein the diffracting crystal plane is nominally coincident with the analyzer surface. We report here comprehensive investigations of 'asymmetric' operation of SBCA on the Rowland circle, wherein the diffracting crystal plane is not coincident with the optical surface of the analyzer. First, we have developed a laboratory spectrometer for XAFS and XES that is specialized for asymmetric SBCA operation. We find several benefits, including the capacity to use a single SBCA over a very wide energy range
via
'
hkl
hopping' and the frequent ability to eliminate Johann error, the most prevalent energy-broadening mechanism when using SBCA symmetrically on the Rowland circle. Second, we expand these ideas to synchrotron facilities with a demonstration study of HERFD and XRS where asymmetric operation also provided advantage. Our results suggest that large-array systems for HERFD augmented with an additional mechanical degree of freedom could streamline user operation and also indicate benefits to XRS in the asymmetric configuration, where larger solid angle, larger sample-to-detector distance, and decreased Johann error can be achieved simultaneously.
We show that asymmetric operation of spherically bent crystal analyzers is an underutilized opportunity that can improve x-ray spectrometer performance and user operations in both the laboratory and synchrotron environments.</description><identifier>ISSN: 0267-9477</identifier><identifier>EISSN: 1364-5544</identifier><identifier>DOI: 10.1039/d3ja00437f</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Analyzers ; Asymmetry ; Configurations ; Crystals ; Emission ; Energy resolution ; Fine structure ; Raman spectra ; Rowland circles ; X ray absorption</subject><ispartof>Journal of analytical atomic spectrometry, 2024-05, Vol.39 (5), p.1375-1387</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c267t-82bd20c6202553670270416c5b270f2b03ddadd964266a9b28d6a081cbdab46d3</cites><orcidid>0000-0002-1451-5035 ; 0000-0001-6738-7930 ; 0000-0003-3862-6896 ; 0000000167387930 ; 0000000214515035 ; 0000000338626896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2324722$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gironda, Anthony J</creatorcontrib><creatorcontrib>Abramson, Jared E</creatorcontrib><creatorcontrib>Chen, Yeu</creatorcontrib><creatorcontrib>Solovyev, Mikhail</creatorcontrib><creatorcontrib>Sterbinsky, George E</creatorcontrib><creatorcontrib>Seidler, Gerald T</creatorcontrib><title>Asymmetric Rowland circle geometries for spherically bent crystal analyzers in laboratory and synchrotron applications</title><title>Journal of analytical atomic spectrometry</title><description>Spherically bent crystal analyzers (SBCAs) are the dominant high-resolution hard X-ray optic in the ongoing rebirth of laboratory-based X-ray absorption fine structure (XAFS) and X-ray emission spectroscopy (XES) as well as in synchrotron methods such as high energy resolution fluorescence detection (HERFD) and non-resonant X-ray Raman scattering (XRS). In the overwhelming majority of cases, SBCAs are implemented in a 'symmetric' configuration on the Rowland circle, wherein the diffracting crystal plane is nominally coincident with the analyzer surface. We report here comprehensive investigations of 'asymmetric' operation of SBCA on the Rowland circle, wherein the diffracting crystal plane is not coincident with the optical surface of the analyzer. First, we have developed a laboratory spectrometer for XAFS and XES that is specialized for asymmetric SBCA operation. We find several benefits, including the capacity to use a single SBCA over a very wide energy range
via
'
hkl
hopping' and the frequent ability to eliminate Johann error, the most prevalent energy-broadening mechanism when using SBCA symmetrically on the Rowland circle. Second, we expand these ideas to synchrotron facilities with a demonstration study of HERFD and XRS where asymmetric operation also provided advantage. Our results suggest that large-array systems for HERFD augmented with an additional mechanical degree of freedom could streamline user operation and also indicate benefits to XRS in the asymmetric configuration, where larger solid angle, larger sample-to-detector distance, and decreased Johann error can be achieved simultaneously.
We show that asymmetric operation of spherically bent crystal analyzers is an underutilized opportunity that can improve x-ray spectrometer performance and user operations in both the laboratory and synchrotron environments.</description><subject>Analyzers</subject><subject>Asymmetry</subject><subject>Configurations</subject><subject>Crystals</subject><subject>Emission</subject><subject>Energy resolution</subject><subject>Fine structure</subject><subject>Raman spectra</subject><subject>Rowland circles</subject><subject>X ray absorption</subject><issn>0267-9477</issn><issn>1364-5544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpF0UtLxDAQB_AgCq6Pi3ch6E2opnl197j4FkEQPZc0Sd0u2aRmskr99Gat6CmB-WWY-Qeho5Kcl4TNLgxbKkI4q9otNCmZ5IUQnG-jCaGyKma8qnbRHsCSZCSomKCPOQyrlU2x0_g5fDrlDdZd1M7iNxt-ChZwGyKGfmGzUs4NuLE-YR0HSMph5ZUbvmwE3HnsVBOiSiEOeNMKBq8XMaQYPFZ97_L71AUPB2inVQ7s4e-5j15vrl8u74rHp9v7y_ljofO8qZjSxlCiJSVUCCYrQivCS6lFky8tbQgzRhkzk5xKqWYNnRqpyLTUjVENl4bto5Oxb4DU1aC7ZPVCB--tTjVllFeUZnQ6oj6G97WFVC_DOuatoGZEUFaJnF5WZ6PSMQBE29Z97FYqDnVJ6k349RV7mP-Ef5Px8Ygj6D_3_znsG9B5grw</recordid><startdate>20240509</startdate><enddate>20240509</enddate><creator>Gironda, Anthony J</creator><creator>Abramson, Jared E</creator><creator>Chen, Yeu</creator><creator>Solovyev, Mikhail</creator><creator>Sterbinsky, George E</creator><creator>Seidler, Gerald T</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1451-5035</orcidid><orcidid>https://orcid.org/0000-0001-6738-7930</orcidid><orcidid>https://orcid.org/0000-0003-3862-6896</orcidid><orcidid>https://orcid.org/0000000167387930</orcidid><orcidid>https://orcid.org/0000000214515035</orcidid><orcidid>https://orcid.org/0000000338626896</orcidid></search><sort><creationdate>20240509</creationdate><title>Asymmetric Rowland circle geometries for spherically bent crystal analyzers in laboratory and synchrotron applications</title><author>Gironda, Anthony J ; Abramson, Jared E ; Chen, Yeu ; Solovyev, Mikhail ; Sterbinsky, George E ; Seidler, Gerald T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-82bd20c6202553670270416c5b270f2b03ddadd964266a9b28d6a081cbdab46d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analyzers</topic><topic>Asymmetry</topic><topic>Configurations</topic><topic>Crystals</topic><topic>Emission</topic><topic>Energy resolution</topic><topic>Fine structure</topic><topic>Raman spectra</topic><topic>Rowland circles</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gironda, Anthony J</creatorcontrib><creatorcontrib>Abramson, Jared E</creatorcontrib><creatorcontrib>Chen, Yeu</creatorcontrib><creatorcontrib>Solovyev, Mikhail</creatorcontrib><creatorcontrib>Sterbinsky, George E</creatorcontrib><creatorcontrib>Seidler, Gerald T</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of analytical atomic spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gironda, Anthony J</au><au>Abramson, Jared E</au><au>Chen, Yeu</au><au>Solovyev, Mikhail</au><au>Sterbinsky, George E</au><au>Seidler, Gerald T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Rowland circle geometries for spherically bent crystal analyzers in laboratory and synchrotron applications</atitle><jtitle>Journal of analytical atomic spectrometry</jtitle><date>2024-05-09</date><risdate>2024</risdate><volume>39</volume><issue>5</issue><spage>1375</spage><epage>1387</epage><pages>1375-1387</pages><issn>0267-9477</issn><eissn>1364-5544</eissn><abstract>Spherically bent crystal analyzers (SBCAs) are the dominant high-resolution hard X-ray optic in the ongoing rebirth of laboratory-based X-ray absorption fine structure (XAFS) and X-ray emission spectroscopy (XES) as well as in synchrotron methods such as high energy resolution fluorescence detection (HERFD) and non-resonant X-ray Raman scattering (XRS). In the overwhelming majority of cases, SBCAs are implemented in a 'symmetric' configuration on the Rowland circle, wherein the diffracting crystal plane is nominally coincident with the analyzer surface. We report here comprehensive investigations of 'asymmetric' operation of SBCA on the Rowland circle, wherein the diffracting crystal plane is not coincident with the optical surface of the analyzer. First, we have developed a laboratory spectrometer for XAFS and XES that is specialized for asymmetric SBCA operation. We find several benefits, including the capacity to use a single SBCA over a very wide energy range
via
'
hkl
hopping' and the frequent ability to eliminate Johann error, the most prevalent energy-broadening mechanism when using SBCA symmetrically on the Rowland circle. Second, we expand these ideas to synchrotron facilities with a demonstration study of HERFD and XRS where asymmetric operation also provided advantage. Our results suggest that large-array systems for HERFD augmented with an additional mechanical degree of freedom could streamline user operation and also indicate benefits to XRS in the asymmetric configuration, where larger solid angle, larger sample-to-detector distance, and decreased Johann error can be achieved simultaneously.
We show that asymmetric operation of spherically bent crystal analyzers is an underutilized opportunity that can improve x-ray spectrometer performance and user operations in both the laboratory and synchrotron environments.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ja00437f</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1451-5035</orcidid><orcidid>https://orcid.org/0000-0001-6738-7930</orcidid><orcidid>https://orcid.org/0000-0003-3862-6896</orcidid><orcidid>https://orcid.org/0000000167387930</orcidid><orcidid>https://orcid.org/0000000214515035</orcidid><orcidid>https://orcid.org/0000000338626896</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0267-9477 |
ispartof | Journal of analytical atomic spectrometry, 2024-05, Vol.39 (5), p.1375-1387 |
issn | 0267-9477 1364-5544 |
language | eng |
recordid | cdi_osti_scitechconnect_2324722 |
source | Royal Society of Chemistry Journals |
subjects | Analyzers Asymmetry Configurations Crystals Emission Energy resolution Fine structure Raman spectra Rowland circles X ray absorption |
title | Asymmetric Rowland circle geometries for spherically bent crystal analyzers in laboratory and synchrotron applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Rowland%20circle%20geometries%20for%20spherically%20bent%20crystal%20analyzers%20in%20laboratory%20and%20synchrotron%20applications&rft.jtitle=Journal%20of%20analytical%20atomic%20spectrometry&rft.au=Gironda,%20Anthony%20J&rft.date=2024-05-09&rft.volume=39&rft.issue=5&rft.spage=1375&rft.epage=1387&rft.pages=1375-1387&rft.issn=0267-9477&rft.eissn=1364-5544&rft_id=info:doi/10.1039/d3ja00437f&rft_dat=%3Cproquest_osti_%3E3052375026%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-82bd20c6202553670270416c5b270f2b03ddadd964266a9b28d6a081cbdab46d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3052375026&rft_id=info:pmid/&rfr_iscdi=true |