Loading…

Multifidelity methods for uncertainty quantification of a nonlocal model for phase changes in materials

This study is devoted to the construction of a multifidelity Monte Carlo (MFMC) method for the uncertainty quantification of a nonlocal, non-mass-conserving Cahn-Hilliard model for phase transitions with an obstacle potential. We are interested in estimating the expected value of an output of intere...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures 2024-07, Vol.297 (C), p.107328, Article 107328
Main Authors: Khodabakhshi, Parisa, Burkovska, Olena, Willcox, Karen, Gunzburger, Max
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c288t-3e26c6a965e33d3edd93155a2e0a03e3cacfbd1131d4bbe2d7dfb9b7861809383
container_end_page
container_issue C
container_start_page 107328
container_title Computers & structures
container_volume 297
creator Khodabakhshi, Parisa
Burkovska, Olena
Willcox, Karen
Gunzburger, Max
description This study is devoted to the construction of a multifidelity Monte Carlo (MFMC) method for the uncertainty quantification of a nonlocal, non-mass-conserving Cahn-Hilliard model for phase transitions with an obstacle potential. We are interested in estimating the expected value of an output of interest (OoI) that depends on the solution of the nonlocal Cahn-Hilliard model. As opposed to its local counterpart, the nonlocal model captures sharp interfaces without the need for significant mesh refinement. However, the computational cost of the nonlocal Cahn-Hilliard model is higher than that of its local counterpart with similar mesh refinement, inhibiting its use for outer-loop applications such as uncertainty quantification. The MFMC method augments the desired high-fidelity, high-cost OoI with a set of lower-fidelity, lower-cost OoIs to alleviate the computational burden associated with nonlocality. Most of the computational budget is allocated to sampling the cheap surrogate models to achieve speedup, whereas the high-fidelity model is sparsely sampled to maintain accuracy. For the non-mass-conserving nonlocal Cahn-Hilliard model, the use of the MFMC method results in, for a given computational budget, about an order of magnitude reduction in the mean-squared error of the expected value of the OoI relative to that of the Monte Carlo method. •The generalized nonlocal Cahn Hilliard model simulates the phase change process.•Nonlocal models are computationally more expensive than their local counterparts.•The MFMC method lowers the computational cost of UQ on nonlocal models.
doi_str_mv 10.1016/j.compstruc.2024.107328
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2326096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794924000579</els_id><sourcerecordid>S0045794924000579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-3e26c6a965e33d3edd93155a2e0a03e3cacfbd1131d4bbe2d7dfb9b7861809383</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKvPYHA_NZe5ZVmKN6i40XXIJGc6KTNJTVKhb--MI25dHfj5L5wPoVtKVpTQ8n6_0n44xBSOesUIy0e14qw-QwtaVyJjLOfnaEFIXmSVyMUluopxTwgpc0IWaPd67JNtrYHephMeIHXeRNz6gI9OQ0jKulH_PCo32bRK1jvsW6yw8673WvV48GP6J3LoVASsO-V2ELF1eFAJglV9vEYX7Xjg5vcu0cfjw_vmOdu-Pb1s1ttMs7pOGQdW6lKJsgDODQdjBKdFoRgQRThwrXTbGEo5NXnTADOVaRvRVHVJayJ4zZfobu71MVkZtU2gO-2dA50k46wkohxN1WzSwccYoJWHYAcVTpISOUGVe_kHVU5Q5Qx1TK7nJIw_fFkI0wSMoIwN04Lx9t-ObwRLh28</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multifidelity methods for uncertainty quantification of a nonlocal model for phase changes in materials</title><source>Elsevier</source><creator>Khodabakhshi, Parisa ; Burkovska, Olena ; Willcox, Karen ; Gunzburger, Max</creator><creatorcontrib>Khodabakhshi, Parisa ; Burkovska, Olena ; Willcox, Karen ; Gunzburger, Max</creatorcontrib><description>This study is devoted to the construction of a multifidelity Monte Carlo (MFMC) method for the uncertainty quantification of a nonlocal, non-mass-conserving Cahn-Hilliard model for phase transitions with an obstacle potential. We are interested in estimating the expected value of an output of interest (OoI) that depends on the solution of the nonlocal Cahn-Hilliard model. As opposed to its local counterpart, the nonlocal model captures sharp interfaces without the need for significant mesh refinement. However, the computational cost of the nonlocal Cahn-Hilliard model is higher than that of its local counterpart with similar mesh refinement, inhibiting its use for outer-loop applications such as uncertainty quantification. The MFMC method augments the desired high-fidelity, high-cost OoI with a set of lower-fidelity, lower-cost OoIs to alleviate the computational burden associated with nonlocality. Most of the computational budget is allocated to sampling the cheap surrogate models to achieve speedup, whereas the high-fidelity model is sparsely sampled to maintain accuracy. For the non-mass-conserving nonlocal Cahn-Hilliard model, the use of the MFMC method results in, for a given computational budget, about an order of magnitude reduction in the mean-squared error of the expected value of the OoI relative to that of the Monte Carlo method. •The generalized nonlocal Cahn Hilliard model simulates the phase change process.•Nonlocal models are computationally more expensive than their local counterparts.•The MFMC method lowers the computational cost of UQ on nonlocal models.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2024.107328</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Cahn-Hilliard model ; Monte Carlo methods ; Multifidelity methods ; Nonlocal models ; Phase changes ; Uncertainty quantification</subject><ispartof>Computers &amp; structures, 2024-07, Vol.297 (C), p.107328, Article 107328</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-3e26c6a965e33d3edd93155a2e0a03e3cacfbd1131d4bbe2d7dfb9b7861809383</cites><orcidid>0000-0001-8807-8192 ; 0000000188078192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2326096$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khodabakhshi, Parisa</creatorcontrib><creatorcontrib>Burkovska, Olena</creatorcontrib><creatorcontrib>Willcox, Karen</creatorcontrib><creatorcontrib>Gunzburger, Max</creatorcontrib><title>Multifidelity methods for uncertainty quantification of a nonlocal model for phase changes in materials</title><title>Computers &amp; structures</title><description>This study is devoted to the construction of a multifidelity Monte Carlo (MFMC) method for the uncertainty quantification of a nonlocal, non-mass-conserving Cahn-Hilliard model for phase transitions with an obstacle potential. We are interested in estimating the expected value of an output of interest (OoI) that depends on the solution of the nonlocal Cahn-Hilliard model. As opposed to its local counterpart, the nonlocal model captures sharp interfaces without the need for significant mesh refinement. However, the computational cost of the nonlocal Cahn-Hilliard model is higher than that of its local counterpart with similar mesh refinement, inhibiting its use for outer-loop applications such as uncertainty quantification. The MFMC method augments the desired high-fidelity, high-cost OoI with a set of lower-fidelity, lower-cost OoIs to alleviate the computational burden associated with nonlocality. Most of the computational budget is allocated to sampling the cheap surrogate models to achieve speedup, whereas the high-fidelity model is sparsely sampled to maintain accuracy. For the non-mass-conserving nonlocal Cahn-Hilliard model, the use of the MFMC method results in, for a given computational budget, about an order of magnitude reduction in the mean-squared error of the expected value of the OoI relative to that of the Monte Carlo method. •The generalized nonlocal Cahn Hilliard model simulates the phase change process.•Nonlocal models are computationally more expensive than their local counterparts.•The MFMC method lowers the computational cost of UQ on nonlocal models.</description><subject>Cahn-Hilliard model</subject><subject>Monte Carlo methods</subject><subject>Multifidelity methods</subject><subject>Nonlocal models</subject><subject>Phase changes</subject><subject>Uncertainty quantification</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKvPYHA_NZe5ZVmKN6i40XXIJGc6KTNJTVKhb--MI25dHfj5L5wPoVtKVpTQ8n6_0n44xBSOesUIy0e14qw-QwtaVyJjLOfnaEFIXmSVyMUluopxTwgpc0IWaPd67JNtrYHephMeIHXeRNz6gI9OQ0jKulH_PCo32bRK1jvsW6yw8673WvV48GP6J3LoVASsO-V2ELF1eFAJglV9vEYX7Xjg5vcu0cfjw_vmOdu-Pb1s1ttMs7pOGQdW6lKJsgDODQdjBKdFoRgQRThwrXTbGEo5NXnTADOVaRvRVHVJayJ4zZfobu71MVkZtU2gO-2dA50k46wkohxN1WzSwccYoJWHYAcVTpISOUGVe_kHVU5Q5Qx1TK7nJIw_fFkI0wSMoIwN04Lx9t-ObwRLh28</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Khodabakhshi, Parisa</creator><creator>Burkovska, Olena</creator><creator>Willcox, Karen</creator><creator>Gunzburger, Max</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8807-8192</orcidid><orcidid>https://orcid.org/0000000188078192</orcidid></search><sort><creationdate>20240701</creationdate><title>Multifidelity methods for uncertainty quantification of a nonlocal model for phase changes in materials</title><author>Khodabakhshi, Parisa ; Burkovska, Olena ; Willcox, Karen ; Gunzburger, Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-3e26c6a965e33d3edd93155a2e0a03e3cacfbd1131d4bbe2d7dfb9b7861809383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cahn-Hilliard model</topic><topic>Monte Carlo methods</topic><topic>Multifidelity methods</topic><topic>Nonlocal models</topic><topic>Phase changes</topic><topic>Uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodabakhshi, Parisa</creatorcontrib><creatorcontrib>Burkovska, Olena</creatorcontrib><creatorcontrib>Willcox, Karen</creatorcontrib><creatorcontrib>Gunzburger, Max</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khodabakhshi, Parisa</au><au>Burkovska, Olena</au><au>Willcox, Karen</au><au>Gunzburger, Max</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifidelity methods for uncertainty quantification of a nonlocal model for phase changes in materials</atitle><jtitle>Computers &amp; structures</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>297</volume><issue>C</issue><spage>107328</spage><pages>107328-</pages><artnum>107328</artnum><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>This study is devoted to the construction of a multifidelity Monte Carlo (MFMC) method for the uncertainty quantification of a nonlocal, non-mass-conserving Cahn-Hilliard model for phase transitions with an obstacle potential. We are interested in estimating the expected value of an output of interest (OoI) that depends on the solution of the nonlocal Cahn-Hilliard model. As opposed to its local counterpart, the nonlocal model captures sharp interfaces without the need for significant mesh refinement. However, the computational cost of the nonlocal Cahn-Hilliard model is higher than that of its local counterpart with similar mesh refinement, inhibiting its use for outer-loop applications such as uncertainty quantification. The MFMC method augments the desired high-fidelity, high-cost OoI with a set of lower-fidelity, lower-cost OoIs to alleviate the computational burden associated with nonlocality. Most of the computational budget is allocated to sampling the cheap surrogate models to achieve speedup, whereas the high-fidelity model is sparsely sampled to maintain accuracy. For the non-mass-conserving nonlocal Cahn-Hilliard model, the use of the MFMC method results in, for a given computational budget, about an order of magnitude reduction in the mean-squared error of the expected value of the OoI relative to that of the Monte Carlo method. •The generalized nonlocal Cahn Hilliard model simulates the phase change process.•Nonlocal models are computationally more expensive than their local counterparts.•The MFMC method lowers the computational cost of UQ on nonlocal models.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2024.107328</doi><orcidid>https://orcid.org/0000-0001-8807-8192</orcidid><orcidid>https://orcid.org/0000000188078192</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2024-07, Vol.297 (C), p.107328, Article 107328
issn 0045-7949
1879-2243
language eng
recordid cdi_osti_scitechconnect_2326096
source Elsevier
subjects Cahn-Hilliard model
Monte Carlo methods
Multifidelity methods
Nonlocal models
Phase changes
Uncertainty quantification
title Multifidelity methods for uncertainty quantification of a nonlocal model for phase changes in materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifidelity%20methods%20for%20uncertainty%20quantification%20of%20a%20nonlocal%20model%20for%20phase%20changes%20in%20materials&rft.jtitle=Computers%20&%20structures&rft.au=Khodabakhshi,%20Parisa&rft.date=2024-07-01&rft.volume=297&rft.issue=C&rft.spage=107328&rft.pages=107328-&rft.artnum=107328&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2024.107328&rft_dat=%3Celsevier_osti_%3ES0045794924000579%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-3e26c6a965e33d3edd93155a2e0a03e3cacfbd1131d4bbe2d7dfb9b7861809383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true