Loading…

Size‐Dependent Photon Avalanching in Tm3+ Doped LiYF4 Nano, Micro, and Bulk Crystals

Photon avalanche (PA) is a highly nonlinear mode of upconversion that is characterized by 100–1000‐fold increase in luminescence intensity upon minute increments of pumping power. The practical realization of numerous possible nano‐bio‐technology applications utilizing the PA phenomenon will require...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2022-10, Vol.10 (19), p.n/a
Main Authors: Dudek, Magdalena, Szalkowski, Marcin, Misiak, Małgorzata, Ćwierzona, Maciej, Skripka, Artiom, Korczak, Zuzanna, Piątkowski, Dawid, Woźniak, Piotr, Lisiecki, Radosław, Goldner, Philippe, Maćkowski, Sebastian, Chan, Emory M., Schuck, P. James, Bednarkiewicz, Artur
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 19
container_start_page
container_title Advanced optical materials
container_volume 10
creator Dudek, Magdalena
Szalkowski, Marcin
Misiak, Małgorzata
Ćwierzona, Maciej
Skripka, Artiom
Korczak, Zuzanna
Piątkowski, Dawid
Woźniak, Piotr
Lisiecki, Radosław
Goldner, Philippe
Maćkowski, Sebastian
Chan, Emory M.
Schuck, P. James
Bednarkiewicz, Artur
description Photon avalanche (PA) is a highly nonlinear mode of upconversion that is characterized by 100–1000‐fold increase in luminescence intensity upon minute increments of pumping power. The practical realization of numerous possible nano‐bio‐technology applications utilizing the PA phenomenon will require information on its susceptibility to the material volume and surface. Here, these parameters are investigated via experimental and theoretical PA. The two‐color, highly nonlinear PA emission at 475 and 800 nm is clearly observed in bulk single crystal, individual microcrystals, and ensembles of colloidal core and core–shell nanoparticles of LiYF4 host doped with either 3 or 8% of thulium ions. The properties of PA emission, such as PA nonlinearity, PA gain, PA intensity, and luminescence kinetics in these materials show dependence on crystal volume and surface quenching. Theoretical simulations provide understanding of key physical processes that influence PA performance. Moreover, photon avalanche single beam super‐resolution imaging is realized for the first time in 3% Tm3+ doped LiYF4 core–shell nanoparticles. The obtained insights and predictions form a solid background for further development and applications of new optimized PA materials. Two‐color, highly nonlinear (S = 8–12) photon avalanche (PA) emission at 475 and 800 nm is observed in bulk single crystal, individual microcrystals, and ensembles of colloidal core and core–shell nanoparticles of LiYF4 host doped with either 3 or 8% of thulium ions. Theoretical simulations and super‐resolution imaging of individual PA nanoparticle support high applicative potential of PA phenomenon.
doi_str_mv 10.1002/adom.202201052
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2326198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721460232</sourcerecordid><originalsourceid>FETCH-LOGICAL-o2302-2438b7724bd721d8d96d1aaad53dd229c097d5c2d258038ea7ebf1fdcf5ca5d83</originalsourceid><addsrcrecordid>eNpNkM1KAzEURoMoWGq3roMudWpyM9PMLGtrVWitYBVchTTJ2NRpMs6PUlc-gs_okzilUlx998Lhu5eD0DElXUoIXEjtV10gAISSCPZQC2gSBZRwuv9vPkSdslwS0kCcJSFvoacH-2l-vr6HJjdOG1fh-4WvvMP9d5lJpxbWvWDr8GzFzvDQ50bjsX0ehfhOOn-OJ1YVTUin8WWdveJBsS4rmZVH6CBtwnT-so0eR1ezwU0wnl7fDvrjwAMjEEDI4jnnEM41B6pjnfQ0lVLqiGkNkCiScB0p0BDFhMVGcjNPaapVGikZ6Zi10cm215eVFaWylVEL5Z0zqhLAoEeTDXS6hfLCv9WmrMTS14Vr_hLQnA17pCEbKtlSHzYza5EXdiWLtaBEbASLjWCxEyz6w-lkt7FfOrBvpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721460232</pqid></control><display><type>article</type><title>Size‐Dependent Photon Avalanching in Tm3+ Doped LiYF4 Nano, Micro, and Bulk Crystals</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Dudek, Magdalena ; Szalkowski, Marcin ; Misiak, Małgorzata ; Ćwierzona, Maciej ; Skripka, Artiom ; Korczak, Zuzanna ; Piątkowski, Dawid ; Woźniak, Piotr ; Lisiecki, Radosław ; Goldner, Philippe ; Maćkowski, Sebastian ; Chan, Emory M. ; Schuck, P. James ; Bednarkiewicz, Artur</creator><creatorcontrib>Dudek, Magdalena ; Szalkowski, Marcin ; Misiak, Małgorzata ; Ćwierzona, Maciej ; Skripka, Artiom ; Korczak, Zuzanna ; Piątkowski, Dawid ; Woźniak, Piotr ; Lisiecki, Radosław ; Goldner, Philippe ; Maćkowski, Sebastian ; Chan, Emory M. ; Schuck, P. James ; Bednarkiewicz, Artur ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Photon avalanche (PA) is a highly nonlinear mode of upconversion that is characterized by 100–1000‐fold increase in luminescence intensity upon minute increments of pumping power. The practical realization of numerous possible nano‐bio‐technology applications utilizing the PA phenomenon will require information on its susceptibility to the material volume and surface. Here, these parameters are investigated via experimental and theoretical PA. The two‐color, highly nonlinear PA emission at 475 and 800 nm is clearly observed in bulk single crystal, individual microcrystals, and ensembles of colloidal core and core–shell nanoparticles of LiYF4 host doped with either 3 or 8% of thulium ions. The properties of PA emission, such as PA nonlinearity, PA gain, PA intensity, and luminescence kinetics in these materials show dependence on crystal volume and surface quenching. Theoretical simulations provide understanding of key physical processes that influence PA performance. Moreover, photon avalanche single beam super‐resolution imaging is realized for the first time in 3% Tm3+ doped LiYF4 core–shell nanoparticles. The obtained insights and predictions form a solid background for further development and applications of new optimized PA materials. Two‐color, highly nonlinear (S = 8–12) photon avalanche (PA) emission at 475 and 800 nm is observed in bulk single crystal, individual microcrystals, and ensembles of colloidal core and core–shell nanoparticles of LiYF4 host doped with either 3 or 8% of thulium ions. Theoretical simulations and super‐resolution imaging of individual PA nanoparticle support high applicative potential of PA phenomenon.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202201052</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Core-shell particles ; Emission ; lanthanides ; Luminescence ; MATERIALS SCIENCE ; Microcrystals ; nanocrystals ; Nanoparticles ; Nonlinearity ; Optics ; photon avalanche ; Photon avalanches ; Photon beams ; Photons ; Single crystals ; super-resolution imaging ; Thulium ; up-conversion ; upconversion</subject><ispartof>Advanced optical materials, 2022-10, Vol.10 (19), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7514-5875 ; 0000-0001-6163-1795 ; 0000-0003-4113-0365 ; 0000-0002-5655-0146 ; 0000-0002-3186-6849 ; 0000-0002-1663-6279 ; 0000-0002-1000-5513 ; 0000-0002-8346-8367 ; 0000-0003-1560-6315 ; 0000000216636279 ; 0000000315606315 ; 0000000161631795 ; 0000000231866849 ; 0000000256550146 ; 0000000275145875 ; 0000000283468367 ; 0000000210005513 ; 0000000341130365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2326198$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dudek, Magdalena</creatorcontrib><creatorcontrib>Szalkowski, Marcin</creatorcontrib><creatorcontrib>Misiak, Małgorzata</creatorcontrib><creatorcontrib>Ćwierzona, Maciej</creatorcontrib><creatorcontrib>Skripka, Artiom</creatorcontrib><creatorcontrib>Korczak, Zuzanna</creatorcontrib><creatorcontrib>Piątkowski, Dawid</creatorcontrib><creatorcontrib>Woźniak, Piotr</creatorcontrib><creatorcontrib>Lisiecki, Radosław</creatorcontrib><creatorcontrib>Goldner, Philippe</creatorcontrib><creatorcontrib>Maćkowski, Sebastian</creatorcontrib><creatorcontrib>Chan, Emory M.</creatorcontrib><creatorcontrib>Schuck, P. James</creatorcontrib><creatorcontrib>Bednarkiewicz, Artur</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Size‐Dependent Photon Avalanching in Tm3+ Doped LiYF4 Nano, Micro, and Bulk Crystals</title><title>Advanced optical materials</title><description>Photon avalanche (PA) is a highly nonlinear mode of upconversion that is characterized by 100–1000‐fold increase in luminescence intensity upon minute increments of pumping power. The practical realization of numerous possible nano‐bio‐technology applications utilizing the PA phenomenon will require information on its susceptibility to the material volume and surface. Here, these parameters are investigated via experimental and theoretical PA. The two‐color, highly nonlinear PA emission at 475 and 800 nm is clearly observed in bulk single crystal, individual microcrystals, and ensembles of colloidal core and core–shell nanoparticles of LiYF4 host doped with either 3 or 8% of thulium ions. The properties of PA emission, such as PA nonlinearity, PA gain, PA intensity, and luminescence kinetics in these materials show dependence on crystal volume and surface quenching. Theoretical simulations provide understanding of key physical processes that influence PA performance. Moreover, photon avalanche single beam super‐resolution imaging is realized for the first time in 3% Tm3+ doped LiYF4 core–shell nanoparticles. The obtained insights and predictions form a solid background for further development and applications of new optimized PA materials. Two‐color, highly nonlinear (S = 8–12) photon avalanche (PA) emission at 475 and 800 nm is observed in bulk single crystal, individual microcrystals, and ensembles of colloidal core and core–shell nanoparticles of LiYF4 host doped with either 3 or 8% of thulium ions. Theoretical simulations and super‐resolution imaging of individual PA nanoparticle support high applicative potential of PA phenomenon.</description><subject>Core-shell particles</subject><subject>Emission</subject><subject>lanthanides</subject><subject>Luminescence</subject><subject>MATERIALS SCIENCE</subject><subject>Microcrystals</subject><subject>nanocrystals</subject><subject>Nanoparticles</subject><subject>Nonlinearity</subject><subject>Optics</subject><subject>photon avalanche</subject><subject>Photon avalanches</subject><subject>Photon beams</subject><subject>Photons</subject><subject>Single crystals</subject><subject>super-resolution imaging</subject><subject>Thulium</subject><subject>up-conversion</subject><subject>upconversion</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEURoMoWGq3roMudWpyM9PMLGtrVWitYBVchTTJ2NRpMs6PUlc-gs_okzilUlx998Lhu5eD0DElXUoIXEjtV10gAISSCPZQC2gSBZRwuv9vPkSdslwS0kCcJSFvoacH-2l-vr6HJjdOG1fh-4WvvMP9d5lJpxbWvWDr8GzFzvDQ50bjsX0ehfhOOn-OJ1YVTUin8WWdveJBsS4rmZVH6CBtwnT-so0eR1ezwU0wnl7fDvrjwAMjEEDI4jnnEM41B6pjnfQ0lVLqiGkNkCiScB0p0BDFhMVGcjNPaapVGikZ6Zi10cm215eVFaWylVEL5Z0zqhLAoEeTDXS6hfLCv9WmrMTS14Vr_hLQnA17pCEbKtlSHzYza5EXdiWLtaBEbASLjWCxEyz6w-lkt7FfOrBvpA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Dudek, Magdalena</creator><creator>Szalkowski, Marcin</creator><creator>Misiak, Małgorzata</creator><creator>Ćwierzona, Maciej</creator><creator>Skripka, Artiom</creator><creator>Korczak, Zuzanna</creator><creator>Piątkowski, Dawid</creator><creator>Woźniak, Piotr</creator><creator>Lisiecki, Radosław</creator><creator>Goldner, Philippe</creator><creator>Maćkowski, Sebastian</creator><creator>Chan, Emory M.</creator><creator>Schuck, P. James</creator><creator>Bednarkiewicz, Artur</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7514-5875</orcidid><orcidid>https://orcid.org/0000-0001-6163-1795</orcidid><orcidid>https://orcid.org/0000-0003-4113-0365</orcidid><orcidid>https://orcid.org/0000-0002-5655-0146</orcidid><orcidid>https://orcid.org/0000-0002-3186-6849</orcidid><orcidid>https://orcid.org/0000-0002-1663-6279</orcidid><orcidid>https://orcid.org/0000-0002-1000-5513</orcidid><orcidid>https://orcid.org/0000-0002-8346-8367</orcidid><orcidid>https://orcid.org/0000-0003-1560-6315</orcidid><orcidid>https://orcid.org/0000000216636279</orcidid><orcidid>https://orcid.org/0000000315606315</orcidid><orcidid>https://orcid.org/0000000161631795</orcidid><orcidid>https://orcid.org/0000000231866849</orcidid><orcidid>https://orcid.org/0000000256550146</orcidid><orcidid>https://orcid.org/0000000275145875</orcidid><orcidid>https://orcid.org/0000000283468367</orcidid><orcidid>https://orcid.org/0000000210005513</orcidid><orcidid>https://orcid.org/0000000341130365</orcidid></search><sort><creationdate>20221001</creationdate><title>Size‐Dependent Photon Avalanching in Tm3+ Doped LiYF4 Nano, Micro, and Bulk Crystals</title><author>Dudek, Magdalena ; Szalkowski, Marcin ; Misiak, Małgorzata ; Ćwierzona, Maciej ; Skripka, Artiom ; Korczak, Zuzanna ; Piątkowski, Dawid ; Woźniak, Piotr ; Lisiecki, Radosław ; Goldner, Philippe ; Maćkowski, Sebastian ; Chan, Emory M. ; Schuck, P. James ; Bednarkiewicz, Artur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o2302-2438b7724bd721d8d96d1aaad53dd229c097d5c2d258038ea7ebf1fdcf5ca5d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Core-shell particles</topic><topic>Emission</topic><topic>lanthanides</topic><topic>Luminescence</topic><topic>MATERIALS SCIENCE</topic><topic>Microcrystals</topic><topic>nanocrystals</topic><topic>Nanoparticles</topic><topic>Nonlinearity</topic><topic>Optics</topic><topic>photon avalanche</topic><topic>Photon avalanches</topic><topic>Photon beams</topic><topic>Photons</topic><topic>Single crystals</topic><topic>super-resolution imaging</topic><topic>Thulium</topic><topic>up-conversion</topic><topic>upconversion</topic><toplevel>online_resources</toplevel><creatorcontrib>Dudek, Magdalena</creatorcontrib><creatorcontrib>Szalkowski, Marcin</creatorcontrib><creatorcontrib>Misiak, Małgorzata</creatorcontrib><creatorcontrib>Ćwierzona, Maciej</creatorcontrib><creatorcontrib>Skripka, Artiom</creatorcontrib><creatorcontrib>Korczak, Zuzanna</creatorcontrib><creatorcontrib>Piątkowski, Dawid</creatorcontrib><creatorcontrib>Woźniak, Piotr</creatorcontrib><creatorcontrib>Lisiecki, Radosław</creatorcontrib><creatorcontrib>Goldner, Philippe</creatorcontrib><creatorcontrib>Maćkowski, Sebastian</creatorcontrib><creatorcontrib>Chan, Emory M.</creatorcontrib><creatorcontrib>Schuck, P. James</creatorcontrib><creatorcontrib>Bednarkiewicz, Artur</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dudek, Magdalena</au><au>Szalkowski, Marcin</au><au>Misiak, Małgorzata</au><au>Ćwierzona, Maciej</au><au>Skripka, Artiom</au><au>Korczak, Zuzanna</au><au>Piątkowski, Dawid</au><au>Woźniak, Piotr</au><au>Lisiecki, Radosław</au><au>Goldner, Philippe</au><au>Maćkowski, Sebastian</au><au>Chan, Emory M.</au><au>Schuck, P. James</au><au>Bednarkiewicz, Artur</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size‐Dependent Photon Avalanching in Tm3+ Doped LiYF4 Nano, Micro, and Bulk Crystals</atitle><jtitle>Advanced optical materials</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>10</volume><issue>19</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Photon avalanche (PA) is a highly nonlinear mode of upconversion that is characterized by 100–1000‐fold increase in luminescence intensity upon minute increments of pumping power. The practical realization of numerous possible nano‐bio‐technology applications utilizing the PA phenomenon will require information on its susceptibility to the material volume and surface. Here, these parameters are investigated via experimental and theoretical PA. The two‐color, highly nonlinear PA emission at 475 and 800 nm is clearly observed in bulk single crystal, individual microcrystals, and ensembles of colloidal core and core–shell nanoparticles of LiYF4 host doped with either 3 or 8% of thulium ions. The properties of PA emission, such as PA nonlinearity, PA gain, PA intensity, and luminescence kinetics in these materials show dependence on crystal volume and surface quenching. Theoretical simulations provide understanding of key physical processes that influence PA performance. Moreover, photon avalanche single beam super‐resolution imaging is realized for the first time in 3% Tm3+ doped LiYF4 core–shell nanoparticles. The obtained insights and predictions form a solid background for further development and applications of new optimized PA materials. Two‐color, highly nonlinear (S = 8–12) photon avalanche (PA) emission at 475 and 800 nm is observed in bulk single crystal, individual microcrystals, and ensembles of colloidal core and core–shell nanoparticles of LiYF4 host doped with either 3 or 8% of thulium ions. Theoretical simulations and super‐resolution imaging of individual PA nanoparticle support high applicative potential of PA phenomenon.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202201052</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7514-5875</orcidid><orcidid>https://orcid.org/0000-0001-6163-1795</orcidid><orcidid>https://orcid.org/0000-0003-4113-0365</orcidid><orcidid>https://orcid.org/0000-0002-5655-0146</orcidid><orcidid>https://orcid.org/0000-0002-3186-6849</orcidid><orcidid>https://orcid.org/0000-0002-1663-6279</orcidid><orcidid>https://orcid.org/0000-0002-1000-5513</orcidid><orcidid>https://orcid.org/0000-0002-8346-8367</orcidid><orcidid>https://orcid.org/0000-0003-1560-6315</orcidid><orcidid>https://orcid.org/0000000216636279</orcidid><orcidid>https://orcid.org/0000000315606315</orcidid><orcidid>https://orcid.org/0000000161631795</orcidid><orcidid>https://orcid.org/0000000231866849</orcidid><orcidid>https://orcid.org/0000000256550146</orcidid><orcidid>https://orcid.org/0000000275145875</orcidid><orcidid>https://orcid.org/0000000283468367</orcidid><orcidid>https://orcid.org/0000000210005513</orcidid><orcidid>https://orcid.org/0000000341130365</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2022-10, Vol.10 (19), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_osti_scitechconnect_2326198
source Wiley-Blackwell Read & Publish Collection
subjects Core-shell particles
Emission
lanthanides
Luminescence
MATERIALS SCIENCE
Microcrystals
nanocrystals
Nanoparticles
Nonlinearity
Optics
photon avalanche
Photon avalanches
Photon beams
Photons
Single crystals
super-resolution imaging
Thulium
up-conversion
upconversion
title Size‐Dependent Photon Avalanching in Tm3+ Doped LiYF4 Nano, Micro, and Bulk Crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%E2%80%90Dependent%20Photon%20Avalanching%20in%20Tm3+%20Doped%20LiYF4%20Nano,%20Micro,%20and%20Bulk%20Crystals&rft.jtitle=Advanced%20optical%20materials&rft.au=Dudek,%20Magdalena&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-10-01&rft.volume=10&rft.issue=19&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202201052&rft_dat=%3Cproquest_osti_%3E2721460232%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o2302-2438b7724bd721d8d96d1aaad53dd229c097d5c2d258038ea7ebf1fdcf5ca5d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2721460232&rft_id=info:pmid/&rfr_iscdi=true