Loading…

Electrolyte Reactivity on the MgV2O4 Cathode Surface

Predictive understanding of the molecular interaction of electrolyte ions and solvent molecules and their chemical reactivity on electrodes has been a major challenge but is essential for addressing instabilities and surface passivation that occur at the electrode–electrolyte interface of multivalen...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-10, Vol.15 (41), p.48072-48084
Main Authors: Jeong, Heonjae, Nguyen, Dan-Thien, Yang, Yingjie, Buchholz, D. Bruce, Evmenenko, Guennadi, Guo, Jinghua, Yang, Feipeng, Redfern, Paul C., Hu, Jian Zhi, Mueller, Karl T., Klie, Robert, Murugesan, Vijayakumar, Connell, Justin, Prabhakaran, Venkateshkumar, Cheng, Lei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 48084
container_issue 41
container_start_page 48072
container_title ACS applied materials & interfaces
container_volume 15
creator Jeong, Heonjae
Nguyen, Dan-Thien
Yang, Yingjie
Buchholz, D. Bruce
Evmenenko, Guennadi
Guo, Jinghua
Yang, Feipeng
Redfern, Paul C.
Hu, Jian Zhi
Mueller, Karl T.
Klie, Robert
Murugesan, Vijayakumar
Connell, Justin
Prabhakaran, Venkateshkumar
Cheng, Lei
description Predictive understanding of the molecular interaction of electrolyte ions and solvent molecules and their chemical reactivity on electrodes has been a major challenge but is essential for addressing instabilities and surface passivation that occur at the electrode–electrolyte interface of multivalent magnesium batteries. In this work, the isolated intrinsic reactivities of prominent chemical species present in magnesium bis­(trifluoromethanesulfonimide) (Mg­(TFSI)2) in diglyme (G2) electrolytes, including ionic (TFSI–, [Mg­(TFSI)]+, [Mg­(TFSI):G2]+, and [Mg­(TFSI):2G2]+) as well as neutral molecules (G2) on a well-defined magnesium vanadate cathode (MgV2O4) surface, have been studied using a combination of first-principles calculations and multimodal spectroscopy analysis. Our calculations show that nonsolvated [Mg­(TFSI)]+ is the strongest adsorbing species on the MgV2O4 surface compared with all other ions while partially solvated [Mg­(TFSI):G2]+ is the most reactive species. The cleavage of C–S bonds in TFSI– to form CF3 – is predicted to be the most desired pathway for all ionic species, which is followed by the cleavage of C–O bonds of G2 to yield CH3 + or OCH3 – species. The strong stabilization and electron transfer between ionic electrolyte species and MgV2O4 is found to significantly favor these decomposition reactions on the surface compared with intrinsic gas-phase dissociation. Experimentally, we used state-of-the-art ion soft landing to selectively deposit mass-selected TFSI–, [Mg­(TFSI):G2]+, and [Mg­(TFSI):2G2]+ on a MgV2O4 thin film to form a well-defined electrolyte–MgV2O4 interface. Analysis of the soft-landed interface using X-ray photoelectron, X-ray absorption near-edge structure, electron energy-loss spectroscopies, as well as transmission electron microscopy confirmed the presence of decomposition species (e.g., MgF x , carbonates) and the higher amount of MgF x with [Mg­(TFSI):G2]+ formed in the interfacial region, which corroborates the theoretical observation. Overall, these results indicate that Mg2+ desolvation results in electrolyte decomposition facilitated by surface adsorption, charge transfer, and the formation of passivating fluorides on the MgV2O4 cathode surface. This work provides the first evidence of the primary mechanisms leading to electrolyte decomposition at high-voltage oxide surfaces in multivalent batteries and suggests that the design of new, anodically stable electrolytes must target systems that facilitate c
doi_str_mv 10.1021/acsami.3c07875
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2328492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874833514</sourcerecordid><originalsourceid>FETCH-LOGICAL-a250t-3b1ab6123b09e5dd4c3c3ace18966be174fc4b8288c766853f66831c9ff9c1113</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK5ePRdPInTN5KNNj7KsH7Cy4Nc1pNPUduk22qTC_nsjXbzMzOF5h5eHkEugC6AMbg16s2sXHGmucnlEZlAIkSom2fH_LcQpOfN-S2nGGZUzIladxTC4bh9s8mINhvanDfvE9UlobPL8-cE2Ilma0LjKJq_jUBu05-SkNp23F4c9J-_3q7flY7rePDwt79apYZKGlJdgygwYL2lhZVUJ5MhjHFSRZaWFXNQoSsWUwjzLlOR1nBywqOsCAYDPydX01_nQao9tsNig6_tYWTPOlChYhK4n6Gtw36P1Qe9aj7brTG_d6DVTuVCcSxARvZnQqEpv3Tj0sb0Gqv_86cmfPvjjvwJSYgE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874833514</pqid></control><display><type>article</type><title>Electrolyte Reactivity on the MgV2O4 Cathode Surface</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Jeong, Heonjae ; Nguyen, Dan-Thien ; Yang, Yingjie ; Buchholz, D. Bruce ; Evmenenko, Guennadi ; Guo, Jinghua ; Yang, Feipeng ; Redfern, Paul C. ; Hu, Jian Zhi ; Mueller, Karl T. ; Klie, Robert ; Murugesan, Vijayakumar ; Connell, Justin ; Prabhakaran, Venkateshkumar ; Cheng, Lei</creator><creatorcontrib>Jeong, Heonjae ; Nguyen, Dan-Thien ; Yang, Yingjie ; Buchholz, D. Bruce ; Evmenenko, Guennadi ; Guo, Jinghua ; Yang, Feipeng ; Redfern, Paul C. ; Hu, Jian Zhi ; Mueller, Karl T. ; Klie, Robert ; Murugesan, Vijayakumar ; Connell, Justin ; Prabhakaran, Venkateshkumar ; Cheng, Lei ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Predictive understanding of the molecular interaction of electrolyte ions and solvent molecules and their chemical reactivity on electrodes has been a major challenge but is essential for addressing instabilities and surface passivation that occur at the electrode–electrolyte interface of multivalent magnesium batteries. In this work, the isolated intrinsic reactivities of prominent chemical species present in magnesium bis­(trifluoromethanesulfonimide) (Mg­(TFSI)2) in diglyme (G2) electrolytes, including ionic (TFSI–, [Mg­(TFSI)]+, [Mg­(TFSI):G2]+, and [Mg­(TFSI):2G2]+) as well as neutral molecules (G2) on a well-defined magnesium vanadate cathode (MgV2O4) surface, have been studied using a combination of first-principles calculations and multimodal spectroscopy analysis. Our calculations show that nonsolvated [Mg­(TFSI)]+ is the strongest adsorbing species on the MgV2O4 surface compared with all other ions while partially solvated [Mg­(TFSI):G2]+ is the most reactive species. The cleavage of C–S bonds in TFSI– to form CF3 – is predicted to be the most desired pathway for all ionic species, which is followed by the cleavage of C–O bonds of G2 to yield CH3 + or OCH3 – species. The strong stabilization and electron transfer between ionic electrolyte species and MgV2O4 is found to significantly favor these decomposition reactions on the surface compared with intrinsic gas-phase dissociation. Experimentally, we used state-of-the-art ion soft landing to selectively deposit mass-selected TFSI–, [Mg­(TFSI):G2]+, and [Mg­(TFSI):2G2]+ on a MgV2O4 thin film to form a well-defined electrolyte–MgV2O4 interface. Analysis of the soft-landed interface using X-ray photoelectron, X-ray absorption near-edge structure, electron energy-loss spectroscopies, as well as transmission electron microscopy confirmed the presence of decomposition species (e.g., MgF x , carbonates) and the higher amount of MgF x with [Mg­(TFSI):G2]+ formed in the interfacial region, which corroborates the theoretical observation. Overall, these results indicate that Mg2+ desolvation results in electrolyte decomposition facilitated by surface adsorption, charge transfer, and the formation of passivating fluorides on the MgV2O4 cathode surface. This work provides the first evidence of the primary mechanisms leading to electrolyte decomposition at high-voltage oxide surfaces in multivalent batteries and suggests that the design of new, anodically stable electrolytes must target systems that facilitate cation desolvation.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c07875</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cathode-electrolyte interphase formation ; Density functional theory ; ENERGY STORAGE ; Energy, Environmental, and Catalysis Applications ; ion soft landing ; MgV2O4 cathode ; surface reactivity</subject><ispartof>ACS applied materials &amp; interfaces, 2023-10, Vol.15 (41), p.48072-48084</ispartof><rights>2023 UChicago Argonne, LLC. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8879-747X ; 0000-0002-3902-1680 ; 0000-0001-6149-1702 ; 0000-0002-8576-2172 ; 0000-0001-9609-9516 ; 0000-0002-2979-2131 ; 0000-0003-4773-6667 ; 0000-0002-5470-3241 ; 0000-0003-4452-049X ; 0000-0001-6692-6488 ; 0000-0002-1898-8171 ; 0000-0002-6580-2237 ; 0000000285762172 ; 0000000229792131 ; 0000000196099516 ; 0000000166926488 ; 000000018879747X ; 0000000347736667 ; 000000034452049X ; 0000000161491702 ; 0000000218988171 ; 0000000239021680 ; 0000000265802237 ; 0000000254703241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2328492$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Heonjae</creatorcontrib><creatorcontrib>Nguyen, Dan-Thien</creatorcontrib><creatorcontrib>Yang, Yingjie</creatorcontrib><creatorcontrib>Buchholz, D. Bruce</creatorcontrib><creatorcontrib>Evmenenko, Guennadi</creatorcontrib><creatorcontrib>Guo, Jinghua</creatorcontrib><creatorcontrib>Yang, Feipeng</creatorcontrib><creatorcontrib>Redfern, Paul C.</creatorcontrib><creatorcontrib>Hu, Jian Zhi</creatorcontrib><creatorcontrib>Mueller, Karl T.</creatorcontrib><creatorcontrib>Klie, Robert</creatorcontrib><creatorcontrib>Murugesan, Vijayakumar</creatorcontrib><creatorcontrib>Connell, Justin</creatorcontrib><creatorcontrib>Prabhakaran, Venkateshkumar</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Electrolyte Reactivity on the MgV2O4 Cathode Surface</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Predictive understanding of the molecular interaction of electrolyte ions and solvent molecules and their chemical reactivity on electrodes has been a major challenge but is essential for addressing instabilities and surface passivation that occur at the electrode–electrolyte interface of multivalent magnesium batteries. In this work, the isolated intrinsic reactivities of prominent chemical species present in magnesium bis­(trifluoromethanesulfonimide) (Mg­(TFSI)2) in diglyme (G2) electrolytes, including ionic (TFSI–, [Mg­(TFSI)]+, [Mg­(TFSI):G2]+, and [Mg­(TFSI):2G2]+) as well as neutral molecules (G2) on a well-defined magnesium vanadate cathode (MgV2O4) surface, have been studied using a combination of first-principles calculations and multimodal spectroscopy analysis. Our calculations show that nonsolvated [Mg­(TFSI)]+ is the strongest adsorbing species on the MgV2O4 surface compared with all other ions while partially solvated [Mg­(TFSI):G2]+ is the most reactive species. The cleavage of C–S bonds in TFSI– to form CF3 – is predicted to be the most desired pathway for all ionic species, which is followed by the cleavage of C–O bonds of G2 to yield CH3 + or OCH3 – species. The strong stabilization and electron transfer between ionic electrolyte species and MgV2O4 is found to significantly favor these decomposition reactions on the surface compared with intrinsic gas-phase dissociation. Experimentally, we used state-of-the-art ion soft landing to selectively deposit mass-selected TFSI–, [Mg­(TFSI):G2]+, and [Mg­(TFSI):2G2]+ on a MgV2O4 thin film to form a well-defined electrolyte–MgV2O4 interface. Analysis of the soft-landed interface using X-ray photoelectron, X-ray absorption near-edge structure, electron energy-loss spectroscopies, as well as transmission electron microscopy confirmed the presence of decomposition species (e.g., MgF x , carbonates) and the higher amount of MgF x with [Mg­(TFSI):G2]+ formed in the interfacial region, which corroborates the theoretical observation. Overall, these results indicate that Mg2+ desolvation results in electrolyte decomposition facilitated by surface adsorption, charge transfer, and the formation of passivating fluorides on the MgV2O4 cathode surface. This work provides the first evidence of the primary mechanisms leading to electrolyte decomposition at high-voltage oxide surfaces in multivalent batteries and suggests that the design of new, anodically stable electrolytes must target systems that facilitate cation desolvation.</description><subject>Cathode-electrolyte interphase formation</subject><subject>Density functional theory</subject><subject>ENERGY STORAGE</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>ion soft landing</subject><subject>MgV2O4 cathode</subject><subject>surface reactivity</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK5ePRdPInTN5KNNj7KsH7Cy4Nc1pNPUduk22qTC_nsjXbzMzOF5h5eHkEugC6AMbg16s2sXHGmucnlEZlAIkSom2fH_LcQpOfN-S2nGGZUzIladxTC4bh9s8mINhvanDfvE9UlobPL8-cE2Ilma0LjKJq_jUBu05-SkNp23F4c9J-_3q7flY7rePDwt79apYZKGlJdgygwYL2lhZVUJ5MhjHFSRZaWFXNQoSsWUwjzLlOR1nBywqOsCAYDPydX01_nQao9tsNig6_tYWTPOlChYhK4n6Gtw36P1Qe9aj7brTG_d6DVTuVCcSxARvZnQqEpv3Tj0sb0Gqv_86cmfPvjjvwJSYgE</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Jeong, Heonjae</creator><creator>Nguyen, Dan-Thien</creator><creator>Yang, Yingjie</creator><creator>Buchholz, D. Bruce</creator><creator>Evmenenko, Guennadi</creator><creator>Guo, Jinghua</creator><creator>Yang, Feipeng</creator><creator>Redfern, Paul C.</creator><creator>Hu, Jian Zhi</creator><creator>Mueller, Karl T.</creator><creator>Klie, Robert</creator><creator>Murugesan, Vijayakumar</creator><creator>Connell, Justin</creator><creator>Prabhakaran, Venkateshkumar</creator><creator>Cheng, Lei</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8879-747X</orcidid><orcidid>https://orcid.org/0000-0002-3902-1680</orcidid><orcidid>https://orcid.org/0000-0001-6149-1702</orcidid><orcidid>https://orcid.org/0000-0002-8576-2172</orcidid><orcidid>https://orcid.org/0000-0001-9609-9516</orcidid><orcidid>https://orcid.org/0000-0002-2979-2131</orcidid><orcidid>https://orcid.org/0000-0003-4773-6667</orcidid><orcidid>https://orcid.org/0000-0002-5470-3241</orcidid><orcidid>https://orcid.org/0000-0003-4452-049X</orcidid><orcidid>https://orcid.org/0000-0001-6692-6488</orcidid><orcidid>https://orcid.org/0000-0002-1898-8171</orcidid><orcidid>https://orcid.org/0000-0002-6580-2237</orcidid><orcidid>https://orcid.org/0000000285762172</orcidid><orcidid>https://orcid.org/0000000229792131</orcidid><orcidid>https://orcid.org/0000000196099516</orcidid><orcidid>https://orcid.org/0000000166926488</orcidid><orcidid>https://orcid.org/000000018879747X</orcidid><orcidid>https://orcid.org/0000000347736667</orcidid><orcidid>https://orcid.org/000000034452049X</orcidid><orcidid>https://orcid.org/0000000161491702</orcidid><orcidid>https://orcid.org/0000000218988171</orcidid><orcidid>https://orcid.org/0000000239021680</orcidid><orcidid>https://orcid.org/0000000265802237</orcidid><orcidid>https://orcid.org/0000000254703241</orcidid></search><sort><creationdate>20231018</creationdate><title>Electrolyte Reactivity on the MgV2O4 Cathode Surface</title><author>Jeong, Heonjae ; Nguyen, Dan-Thien ; Yang, Yingjie ; Buchholz, D. Bruce ; Evmenenko, Guennadi ; Guo, Jinghua ; Yang, Feipeng ; Redfern, Paul C. ; Hu, Jian Zhi ; Mueller, Karl T. ; Klie, Robert ; Murugesan, Vijayakumar ; Connell, Justin ; Prabhakaran, Venkateshkumar ; Cheng, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a250t-3b1ab6123b09e5dd4c3c3ace18966be174fc4b8288c766853f66831c9ff9c1113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathode-electrolyte interphase formation</topic><topic>Density functional theory</topic><topic>ENERGY STORAGE</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>ion soft landing</topic><topic>MgV2O4 cathode</topic><topic>surface reactivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Heonjae</creatorcontrib><creatorcontrib>Nguyen, Dan-Thien</creatorcontrib><creatorcontrib>Yang, Yingjie</creatorcontrib><creatorcontrib>Buchholz, D. Bruce</creatorcontrib><creatorcontrib>Evmenenko, Guennadi</creatorcontrib><creatorcontrib>Guo, Jinghua</creatorcontrib><creatorcontrib>Yang, Feipeng</creatorcontrib><creatorcontrib>Redfern, Paul C.</creatorcontrib><creatorcontrib>Hu, Jian Zhi</creatorcontrib><creatorcontrib>Mueller, Karl T.</creatorcontrib><creatorcontrib>Klie, Robert</creatorcontrib><creatorcontrib>Murugesan, Vijayakumar</creatorcontrib><creatorcontrib>Connell, Justin</creatorcontrib><creatorcontrib>Prabhakaran, Venkateshkumar</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Heonjae</au><au>Nguyen, Dan-Thien</au><au>Yang, Yingjie</au><au>Buchholz, D. Bruce</au><au>Evmenenko, Guennadi</au><au>Guo, Jinghua</au><au>Yang, Feipeng</au><au>Redfern, Paul C.</au><au>Hu, Jian Zhi</au><au>Mueller, Karl T.</au><au>Klie, Robert</au><au>Murugesan, Vijayakumar</au><au>Connell, Justin</au><au>Prabhakaran, Venkateshkumar</au><au>Cheng, Lei</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrolyte Reactivity on the MgV2O4 Cathode Surface</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-10-18</date><risdate>2023</risdate><volume>15</volume><issue>41</issue><spage>48072</spage><epage>48084</epage><pages>48072-48084</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Predictive understanding of the molecular interaction of electrolyte ions and solvent molecules and their chemical reactivity on electrodes has been a major challenge but is essential for addressing instabilities and surface passivation that occur at the electrode–electrolyte interface of multivalent magnesium batteries. In this work, the isolated intrinsic reactivities of prominent chemical species present in magnesium bis­(trifluoromethanesulfonimide) (Mg­(TFSI)2) in diglyme (G2) electrolytes, including ionic (TFSI–, [Mg­(TFSI)]+, [Mg­(TFSI):G2]+, and [Mg­(TFSI):2G2]+) as well as neutral molecules (G2) on a well-defined magnesium vanadate cathode (MgV2O4) surface, have been studied using a combination of first-principles calculations and multimodal spectroscopy analysis. Our calculations show that nonsolvated [Mg­(TFSI)]+ is the strongest adsorbing species on the MgV2O4 surface compared with all other ions while partially solvated [Mg­(TFSI):G2]+ is the most reactive species. The cleavage of C–S bonds in TFSI– to form CF3 – is predicted to be the most desired pathway for all ionic species, which is followed by the cleavage of C–O bonds of G2 to yield CH3 + or OCH3 – species. The strong stabilization and electron transfer between ionic electrolyte species and MgV2O4 is found to significantly favor these decomposition reactions on the surface compared with intrinsic gas-phase dissociation. Experimentally, we used state-of-the-art ion soft landing to selectively deposit mass-selected TFSI–, [Mg­(TFSI):G2]+, and [Mg­(TFSI):2G2]+ on a MgV2O4 thin film to form a well-defined electrolyte–MgV2O4 interface. Analysis of the soft-landed interface using X-ray photoelectron, X-ray absorption near-edge structure, electron energy-loss spectroscopies, as well as transmission electron microscopy confirmed the presence of decomposition species (e.g., MgF x , carbonates) and the higher amount of MgF x with [Mg­(TFSI):G2]+ formed in the interfacial region, which corroborates the theoretical observation. Overall, these results indicate that Mg2+ desolvation results in electrolyte decomposition facilitated by surface adsorption, charge transfer, and the formation of passivating fluorides on the MgV2O4 cathode surface. This work provides the first evidence of the primary mechanisms leading to electrolyte decomposition at high-voltage oxide surfaces in multivalent batteries and suggests that the design of new, anodically stable electrolytes must target systems that facilitate cation desolvation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsami.3c07875</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8879-747X</orcidid><orcidid>https://orcid.org/0000-0002-3902-1680</orcidid><orcidid>https://orcid.org/0000-0001-6149-1702</orcidid><orcidid>https://orcid.org/0000-0002-8576-2172</orcidid><orcidid>https://orcid.org/0000-0001-9609-9516</orcidid><orcidid>https://orcid.org/0000-0002-2979-2131</orcidid><orcidid>https://orcid.org/0000-0003-4773-6667</orcidid><orcidid>https://orcid.org/0000-0002-5470-3241</orcidid><orcidid>https://orcid.org/0000-0003-4452-049X</orcidid><orcidid>https://orcid.org/0000-0001-6692-6488</orcidid><orcidid>https://orcid.org/0000-0002-1898-8171</orcidid><orcidid>https://orcid.org/0000-0002-6580-2237</orcidid><orcidid>https://orcid.org/0000000285762172</orcidid><orcidid>https://orcid.org/0000000229792131</orcidid><orcidid>https://orcid.org/0000000196099516</orcidid><orcidid>https://orcid.org/0000000166926488</orcidid><orcidid>https://orcid.org/000000018879747X</orcidid><orcidid>https://orcid.org/0000000347736667</orcidid><orcidid>https://orcid.org/000000034452049X</orcidid><orcidid>https://orcid.org/0000000161491702</orcidid><orcidid>https://orcid.org/0000000218988171</orcidid><orcidid>https://orcid.org/0000000239021680</orcidid><orcidid>https://orcid.org/0000000265802237</orcidid><orcidid>https://orcid.org/0000000254703241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-10, Vol.15 (41), p.48072-48084
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_2328492
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Cathode-electrolyte interphase formation
Density functional theory
ENERGY STORAGE
Energy, Environmental, and Catalysis Applications
ion soft landing
MgV2O4 cathode
surface reactivity
title Electrolyte Reactivity on the MgV2O4 Cathode Surface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrolyte%20Reactivity%20on%20the%20MgV2O4%20Cathode%20Surface&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jeong,%20Heonjae&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2023-10-18&rft.volume=15&rft.issue=41&rft.spage=48072&rft.epage=48084&rft.pages=48072-48084&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c07875&rft_dat=%3Cproquest_osti_%3E2874833514%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a250t-3b1ab6123b09e5dd4c3c3ace18966be174fc4b8288c766853f66831c9ff9c1113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2874833514&rft_id=info:pmid/&rfr_iscdi=true