Loading…
Correlations between Molecular Structure, Solvation Topology, and Transport Properties of Aqueous Organic Flow Battery Electrolyte Solutions
Aqueous organic redox flow batteries (AORFBs) are considered promising technologies for storing energy generated from renewable resources. However, designing organic electrolyte molecules is limited by gaps between fundamental understanding of coupling between solvation structure and dynamics and ma...
Saved in:
Published in: | ACS materials letters 2023-11, Vol.5 (11), p.3050-3057 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a239t-529f9b13511d5c499dbe5821685912a4be14d0a7f92ac718a69b0f8661c364f13 |
container_end_page | 3057 |
container_issue | 11 |
container_start_page | 3050 |
container_title | ACS materials letters |
container_volume | 5 |
creator | Kumar, Nitesh Rishko, Wilma Fiedler, Kevin R. Hollas, Aaron Chun, Jaehun Johnson, Samantha I. |
description | Aqueous organic redox flow batteries (AORFBs) are considered promising technologies for storing energy generated from renewable resources. However, designing organic electrolyte molecules is limited by gaps between fundamental understanding of coupling between solvation structure and dynamics and macroscopic transport properties like viscosity. Herein, we used molecular dynamics simulations to understand correlations among ionic molecular structures, ion clustering, and transport properties in 2,3-dihydrophenazine (2,3-DHP), a promising AORFB anolyte. We show that experimentally measured viscosity can be reproduced from simulations at relevant concentrations and that the asymmetric structure of 2,3-DHP leads to a unique inhomogeneity in the solvation topology. However, order parameters and metrics need to be developed for better correlations over spatiotemporal scales with careful consideration of the inhomogeneity of organic anolyte molecules. We show that the increased size and asymmetry of the anolyte lead to breakdown of assumptions within methods for determining ion transport mechanisms previously developed for Li-ion batteries. |
doi_str_mv | 10.1021/acsmaterialslett.3c00838 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2332951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b620040392</sourcerecordid><originalsourceid>FETCH-LOGICAL-a239t-529f9b13511d5c499dbe5821685912a4be14d0a7f92ac718a69b0f8661c364f13</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEhXwDhZnUuw4SeNjqcqPVFQkyjlynA2kcrNl7VD1HXho3J8D4sJp9_DNzuxEERN8KHgibrVxK-2BWm2dBe-H0nBeyOIkGiS5VHGqRur0134eXTm35Dxoc6HSdBB9T5AIrPYtdo5V4DcAHXtGC6a3mtirp974nuCGvaL92nNsgWu0-L69Ybqr2YJ059ZInr0QroF8C45hw8afPWDv2Jzeddcadm9xw-60D3m3bBoMPKHdetgd7vf-l9FZEz6Bq-O8iN7up4vJYzybPzxNxrNYJ1L5OEtUoyohMyHqzKRK1RVkRXipyJRIdFqBSGuuR41KtBmJQueq4k2R58LIPG2EvIiuD3fR-bZ0pvVgPgx2XchUJlImKttBxQEyhM4RNOWa2pWmbSl4uWu__Nt-eWw_SNODNBDlEnvqAvG_7Af_cJNj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Correlations between Molecular Structure, Solvation Topology, and Transport Properties of Aqueous Organic Flow Battery Electrolyte Solutions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kumar, Nitesh ; Rishko, Wilma ; Fiedler, Kevin R. ; Hollas, Aaron ; Chun, Jaehun ; Johnson, Samantha I.</creator><creatorcontrib>Kumar, Nitesh ; Rishko, Wilma ; Fiedler, Kevin R. ; Hollas, Aaron ; Chun, Jaehun ; Johnson, Samantha I. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Aqueous organic redox flow batteries (AORFBs) are considered promising technologies for storing energy generated from renewable resources. However, designing organic electrolyte molecules is limited by gaps between fundamental understanding of coupling between solvation structure and dynamics and macroscopic transport properties like viscosity. Herein, we used molecular dynamics simulations to understand correlations among ionic molecular structures, ion clustering, and transport properties in 2,3-dihydrophenazine (2,3-DHP), a promising AORFB anolyte. We show that experimentally measured viscosity can be reproduced from simulations at relevant concentrations and that the asymmetric structure of 2,3-DHP leads to a unique inhomogeneity in the solvation topology. However, order parameters and metrics need to be developed for better correlations over spatiotemporal scales with careful consideration of the inhomogeneity of organic anolyte molecules. We show that the increased size and asymmetry of the anolyte lead to breakdown of assumptions within methods for determining ion transport mechanisms previously developed for Li-ion batteries.</description><identifier>ISSN: 2639-4979</identifier><identifier>EISSN: 2639-4979</identifier><identifier>DOI: 10.1021/acsmaterialslett.3c00838</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ENERGY STORAGE</subject><ispartof>ACS materials letters, 2023-11, Vol.5 (11), p.3050-3057</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a239t-529f9b13511d5c499dbe5821685912a4be14d0a7f92ac718a69b0f8661c364f13</cites><orcidid>0000-0002-2291-6496 ; 0000-0001-6495-9892 ; 0000-0003-3322-8450 ; 0000-0002-6259-062X ; 0000000164959892 ; 0000000333228450 ; 0000000222916496 ; 000000026259062X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2332951$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Nitesh</creatorcontrib><creatorcontrib>Rishko, Wilma</creatorcontrib><creatorcontrib>Fiedler, Kevin R.</creatorcontrib><creatorcontrib>Hollas, Aaron</creatorcontrib><creatorcontrib>Chun, Jaehun</creatorcontrib><creatorcontrib>Johnson, Samantha I.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Correlations between Molecular Structure, Solvation Topology, and Transport Properties of Aqueous Organic Flow Battery Electrolyte Solutions</title><title>ACS materials letters</title><addtitle>ACS Materials Lett</addtitle><description>Aqueous organic redox flow batteries (AORFBs) are considered promising technologies for storing energy generated from renewable resources. However, designing organic electrolyte molecules is limited by gaps between fundamental understanding of coupling between solvation structure and dynamics and macroscopic transport properties like viscosity. Herein, we used molecular dynamics simulations to understand correlations among ionic molecular structures, ion clustering, and transport properties in 2,3-dihydrophenazine (2,3-DHP), a promising AORFB anolyte. We show that experimentally measured viscosity can be reproduced from simulations at relevant concentrations and that the asymmetric structure of 2,3-DHP leads to a unique inhomogeneity in the solvation topology. However, order parameters and metrics need to be developed for better correlations over spatiotemporal scales with careful consideration of the inhomogeneity of organic anolyte molecules. We show that the increased size and asymmetry of the anolyte lead to breakdown of assumptions within methods for determining ion transport mechanisms previously developed for Li-ion batteries.</description><subject>ENERGY STORAGE</subject><issn>2639-4979</issn><issn>2639-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEhXwDhZnUuw4SeNjqcqPVFQkyjlynA2kcrNl7VD1HXho3J8D4sJp9_DNzuxEERN8KHgibrVxK-2BWm2dBe-H0nBeyOIkGiS5VHGqRur0134eXTm35Dxoc6HSdBB9T5AIrPYtdo5V4DcAHXtGC6a3mtirp974nuCGvaL92nNsgWu0-L69Ybqr2YJ059ZInr0QroF8C45hw8afPWDv2Jzeddcadm9xw-60D3m3bBoMPKHdetgd7vf-l9FZEz6Bq-O8iN7up4vJYzybPzxNxrNYJ1L5OEtUoyohMyHqzKRK1RVkRXipyJRIdFqBSGuuR41KtBmJQueq4k2R58LIPG2EvIiuD3fR-bZ0pvVgPgx2XchUJlImKttBxQEyhM4RNOWa2pWmbSl4uWu__Nt-eWw_SNODNBDlEnvqAvG_7Af_cJNj</recordid><startdate>20231106</startdate><enddate>20231106</enddate><creator>Kumar, Nitesh</creator><creator>Rishko, Wilma</creator><creator>Fiedler, Kevin R.</creator><creator>Hollas, Aaron</creator><creator>Chun, Jaehun</creator><creator>Johnson, Samantha I.</creator><general>American Chemical Society</general><general>ACS Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2291-6496</orcidid><orcidid>https://orcid.org/0000-0001-6495-9892</orcidid><orcidid>https://orcid.org/0000-0003-3322-8450</orcidid><orcidid>https://orcid.org/0000-0002-6259-062X</orcidid><orcidid>https://orcid.org/0000000164959892</orcidid><orcidid>https://orcid.org/0000000333228450</orcidid><orcidid>https://orcid.org/0000000222916496</orcidid><orcidid>https://orcid.org/000000026259062X</orcidid></search><sort><creationdate>20231106</creationdate><title>Correlations between Molecular Structure, Solvation Topology, and Transport Properties of Aqueous Organic Flow Battery Electrolyte Solutions</title><author>Kumar, Nitesh ; Rishko, Wilma ; Fiedler, Kevin R. ; Hollas, Aaron ; Chun, Jaehun ; Johnson, Samantha I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a239t-529f9b13511d5c499dbe5821685912a4be14d0a7f92ac718a69b0f8661c364f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ENERGY STORAGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Nitesh</creatorcontrib><creatorcontrib>Rishko, Wilma</creatorcontrib><creatorcontrib>Fiedler, Kevin R.</creatorcontrib><creatorcontrib>Hollas, Aaron</creatorcontrib><creatorcontrib>Chun, Jaehun</creatorcontrib><creatorcontrib>Johnson, Samantha I.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Nitesh</au><au>Rishko, Wilma</au><au>Fiedler, Kevin R.</au><au>Hollas, Aaron</au><au>Chun, Jaehun</au><au>Johnson, Samantha I.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlations between Molecular Structure, Solvation Topology, and Transport Properties of Aqueous Organic Flow Battery Electrolyte Solutions</atitle><jtitle>ACS materials letters</jtitle><addtitle>ACS Materials Lett</addtitle><date>2023-11-06</date><risdate>2023</risdate><volume>5</volume><issue>11</issue><spage>3050</spage><epage>3057</epage><pages>3050-3057</pages><issn>2639-4979</issn><eissn>2639-4979</eissn><abstract>Aqueous organic redox flow batteries (AORFBs) are considered promising technologies for storing energy generated from renewable resources. However, designing organic electrolyte molecules is limited by gaps between fundamental understanding of coupling between solvation structure and dynamics and macroscopic transport properties like viscosity. Herein, we used molecular dynamics simulations to understand correlations among ionic molecular structures, ion clustering, and transport properties in 2,3-dihydrophenazine (2,3-DHP), a promising AORFB anolyte. We show that experimentally measured viscosity can be reproduced from simulations at relevant concentrations and that the asymmetric structure of 2,3-DHP leads to a unique inhomogeneity in the solvation topology. However, order parameters and metrics need to be developed for better correlations over spatiotemporal scales with careful consideration of the inhomogeneity of organic anolyte molecules. We show that the increased size and asymmetry of the anolyte lead to breakdown of assumptions within methods for determining ion transport mechanisms previously developed for Li-ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsmaterialslett.3c00838</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2291-6496</orcidid><orcidid>https://orcid.org/0000-0001-6495-9892</orcidid><orcidid>https://orcid.org/0000-0003-3322-8450</orcidid><orcidid>https://orcid.org/0000-0002-6259-062X</orcidid><orcidid>https://orcid.org/0000000164959892</orcidid><orcidid>https://orcid.org/0000000333228450</orcidid><orcidid>https://orcid.org/0000000222916496</orcidid><orcidid>https://orcid.org/000000026259062X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2639-4979 |
ispartof | ACS materials letters, 2023-11, Vol.5 (11), p.3050-3057 |
issn | 2639-4979 2639-4979 |
language | eng |
recordid | cdi_osti_scitechconnect_2332951 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | ENERGY STORAGE |
title | Correlations between Molecular Structure, Solvation Topology, and Transport Properties of Aqueous Organic Flow Battery Electrolyte Solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlations%20between%20Molecular%20Structure,%20Solvation%20Topology,%20and%20Transport%20Properties%20of%20Aqueous%20Organic%20Flow%20Battery%20Electrolyte%20Solutions&rft.jtitle=ACS%20materials%20letters&rft.au=Kumar,%20Nitesh&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2023-11-06&rft.volume=5&rft.issue=11&rft.spage=3050&rft.epage=3057&rft.pages=3050-3057&rft.issn=2639-4979&rft.eissn=2639-4979&rft_id=info:doi/10.1021/acsmaterialslett.3c00838&rft_dat=%3Cacs_osti_%3Eb620040392%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a239t-529f9b13511d5c499dbe5821685912a4be14d0a7f92ac718a69b0f8661c364f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |