Loading…

Correlations between Molecular Structure, Solvation Topology, and Transport Properties of Aqueous Organic Flow Battery Electrolyte Solutions

Aqueous organic redox flow batteries (AORFBs) are considered promising technologies for storing energy generated from renewable resources. However, designing organic electrolyte molecules is limited by gaps between fundamental understanding of coupling between solvation structure and dynamics and ma...

Full description

Saved in:
Bibliographic Details
Published in:ACS materials letters 2023-11, Vol.5 (11), p.3050-3057
Main Authors: Kumar, Nitesh, Rishko, Wilma, Fiedler, Kevin R., Hollas, Aaron, Chun, Jaehun, Johnson, Samantha I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a239t-529f9b13511d5c499dbe5821685912a4be14d0a7f92ac718a69b0f8661c364f13
container_end_page 3057
container_issue 11
container_start_page 3050
container_title ACS materials letters
container_volume 5
creator Kumar, Nitesh
Rishko, Wilma
Fiedler, Kevin R.
Hollas, Aaron
Chun, Jaehun
Johnson, Samantha I.
description Aqueous organic redox flow batteries (AORFBs) are considered promising technologies for storing energy generated from renewable resources. However, designing organic electrolyte molecules is limited by gaps between fundamental understanding of coupling between solvation structure and dynamics and macroscopic transport properties like viscosity. Herein, we used molecular dynamics simulations to understand correlations among ionic molecular structures, ion clustering, and transport properties in 2,3-dihydrophenazine (2,3-DHP), a promising AORFB anolyte. We show that experimentally measured viscosity can be reproduced from simulations at relevant concentrations and that the asymmetric structure of 2,3-DHP leads to a unique inhomogeneity in the solvation topology. However, order parameters and metrics need to be developed for better correlations over spatiotemporal scales with careful consideration of the inhomogeneity of organic anolyte molecules. We show that the increased size and asymmetry of the anolyte lead to breakdown of assumptions within methods for determining ion transport mechanisms previously developed for Li-ion batteries.
doi_str_mv 10.1021/acsmaterialslett.3c00838
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2332951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b620040392</sourcerecordid><originalsourceid>FETCH-LOGICAL-a239t-529f9b13511d5c499dbe5821685912a4be14d0a7f92ac718a69b0f8661c364f13</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEhXwDhZnUuw4SeNjqcqPVFQkyjlynA2kcrNl7VD1HXho3J8D4sJp9_DNzuxEERN8KHgibrVxK-2BWm2dBe-H0nBeyOIkGiS5VHGqRur0134eXTm35Dxoc6HSdBB9T5AIrPYtdo5V4DcAHXtGC6a3mtirp974nuCGvaL92nNsgWu0-L69Ybqr2YJ059ZInr0QroF8C45hw8afPWDv2Jzeddcadm9xw-60D3m3bBoMPKHdetgd7vf-l9FZEz6Bq-O8iN7up4vJYzybPzxNxrNYJ1L5OEtUoyohMyHqzKRK1RVkRXipyJRIdFqBSGuuR41KtBmJQueq4k2R58LIPG2EvIiuD3fR-bZ0pvVgPgx2XchUJlImKttBxQEyhM4RNOWa2pWmbSl4uWu__Nt-eWw_SNODNBDlEnvqAvG_7Af_cJNj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Correlations between Molecular Structure, Solvation Topology, and Transport Properties of Aqueous Organic Flow Battery Electrolyte Solutions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kumar, Nitesh ; Rishko, Wilma ; Fiedler, Kevin R. ; Hollas, Aaron ; Chun, Jaehun ; Johnson, Samantha I.</creator><creatorcontrib>Kumar, Nitesh ; Rishko, Wilma ; Fiedler, Kevin R. ; Hollas, Aaron ; Chun, Jaehun ; Johnson, Samantha I. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Aqueous organic redox flow batteries (AORFBs) are considered promising technologies for storing energy generated from renewable resources. However, designing organic electrolyte molecules is limited by gaps between fundamental understanding of coupling between solvation structure and dynamics and macroscopic transport properties like viscosity. Herein, we used molecular dynamics simulations to understand correlations among ionic molecular structures, ion clustering, and transport properties in 2,3-dihydrophenazine (2,3-DHP), a promising AORFB anolyte. We show that experimentally measured viscosity can be reproduced from simulations at relevant concentrations and that the asymmetric structure of 2,3-DHP leads to a unique inhomogeneity in the solvation topology. However, order parameters and metrics need to be developed for better correlations over spatiotemporal scales with careful consideration of the inhomogeneity of organic anolyte molecules. We show that the increased size and asymmetry of the anolyte lead to breakdown of assumptions within methods for determining ion transport mechanisms previously developed for Li-ion batteries.</description><identifier>ISSN: 2639-4979</identifier><identifier>EISSN: 2639-4979</identifier><identifier>DOI: 10.1021/acsmaterialslett.3c00838</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ENERGY STORAGE</subject><ispartof>ACS materials letters, 2023-11, Vol.5 (11), p.3050-3057</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a239t-529f9b13511d5c499dbe5821685912a4be14d0a7f92ac718a69b0f8661c364f13</cites><orcidid>0000-0002-2291-6496 ; 0000-0001-6495-9892 ; 0000-0003-3322-8450 ; 0000-0002-6259-062X ; 0000000164959892 ; 0000000333228450 ; 0000000222916496 ; 000000026259062X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2332951$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Nitesh</creatorcontrib><creatorcontrib>Rishko, Wilma</creatorcontrib><creatorcontrib>Fiedler, Kevin R.</creatorcontrib><creatorcontrib>Hollas, Aaron</creatorcontrib><creatorcontrib>Chun, Jaehun</creatorcontrib><creatorcontrib>Johnson, Samantha I.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Correlations between Molecular Structure, Solvation Topology, and Transport Properties of Aqueous Organic Flow Battery Electrolyte Solutions</title><title>ACS materials letters</title><addtitle>ACS Materials Lett</addtitle><description>Aqueous organic redox flow batteries (AORFBs) are considered promising technologies for storing energy generated from renewable resources. However, designing organic electrolyte molecules is limited by gaps between fundamental understanding of coupling between solvation structure and dynamics and macroscopic transport properties like viscosity. Herein, we used molecular dynamics simulations to understand correlations among ionic molecular structures, ion clustering, and transport properties in 2,3-dihydrophenazine (2,3-DHP), a promising AORFB anolyte. We show that experimentally measured viscosity can be reproduced from simulations at relevant concentrations and that the asymmetric structure of 2,3-DHP leads to a unique inhomogeneity in the solvation topology. However, order parameters and metrics need to be developed for better correlations over spatiotemporal scales with careful consideration of the inhomogeneity of organic anolyte molecules. We show that the increased size and asymmetry of the anolyte lead to breakdown of assumptions within methods for determining ion transport mechanisms previously developed for Li-ion batteries.</description><subject>ENERGY STORAGE</subject><issn>2639-4979</issn><issn>2639-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEhXwDhZnUuw4SeNjqcqPVFQkyjlynA2kcrNl7VD1HXho3J8D4sJp9_DNzuxEERN8KHgibrVxK-2BWm2dBe-H0nBeyOIkGiS5VHGqRur0134eXTm35Dxoc6HSdBB9T5AIrPYtdo5V4DcAHXtGC6a3mtirp974nuCGvaL92nNsgWu0-L69Ybqr2YJ059ZInr0QroF8C45hw8afPWDv2Jzeddcadm9xw-60D3m3bBoMPKHdetgd7vf-l9FZEz6Bq-O8iN7up4vJYzybPzxNxrNYJ1L5OEtUoyohMyHqzKRK1RVkRXipyJRIdFqBSGuuR41KtBmJQueq4k2R58LIPG2EvIiuD3fR-bZ0pvVgPgx2XchUJlImKttBxQEyhM4RNOWa2pWmbSl4uWu__Nt-eWw_SNODNBDlEnvqAvG_7Af_cJNj</recordid><startdate>20231106</startdate><enddate>20231106</enddate><creator>Kumar, Nitesh</creator><creator>Rishko, Wilma</creator><creator>Fiedler, Kevin R.</creator><creator>Hollas, Aaron</creator><creator>Chun, Jaehun</creator><creator>Johnson, Samantha I.</creator><general>American Chemical Society</general><general>ACS Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2291-6496</orcidid><orcidid>https://orcid.org/0000-0001-6495-9892</orcidid><orcidid>https://orcid.org/0000-0003-3322-8450</orcidid><orcidid>https://orcid.org/0000-0002-6259-062X</orcidid><orcidid>https://orcid.org/0000000164959892</orcidid><orcidid>https://orcid.org/0000000333228450</orcidid><orcidid>https://orcid.org/0000000222916496</orcidid><orcidid>https://orcid.org/000000026259062X</orcidid></search><sort><creationdate>20231106</creationdate><title>Correlations between Molecular Structure, Solvation Topology, and Transport Properties of Aqueous Organic Flow Battery Electrolyte Solutions</title><author>Kumar, Nitesh ; Rishko, Wilma ; Fiedler, Kevin R. ; Hollas, Aaron ; Chun, Jaehun ; Johnson, Samantha I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a239t-529f9b13511d5c499dbe5821685912a4be14d0a7f92ac718a69b0f8661c364f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ENERGY STORAGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Nitesh</creatorcontrib><creatorcontrib>Rishko, Wilma</creatorcontrib><creatorcontrib>Fiedler, Kevin R.</creatorcontrib><creatorcontrib>Hollas, Aaron</creatorcontrib><creatorcontrib>Chun, Jaehun</creatorcontrib><creatorcontrib>Johnson, Samantha I.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Nitesh</au><au>Rishko, Wilma</au><au>Fiedler, Kevin R.</au><au>Hollas, Aaron</au><au>Chun, Jaehun</au><au>Johnson, Samantha I.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlations between Molecular Structure, Solvation Topology, and Transport Properties of Aqueous Organic Flow Battery Electrolyte Solutions</atitle><jtitle>ACS materials letters</jtitle><addtitle>ACS Materials Lett</addtitle><date>2023-11-06</date><risdate>2023</risdate><volume>5</volume><issue>11</issue><spage>3050</spage><epage>3057</epage><pages>3050-3057</pages><issn>2639-4979</issn><eissn>2639-4979</eissn><abstract>Aqueous organic redox flow batteries (AORFBs) are considered promising technologies for storing energy generated from renewable resources. However, designing organic electrolyte molecules is limited by gaps between fundamental understanding of coupling between solvation structure and dynamics and macroscopic transport properties like viscosity. Herein, we used molecular dynamics simulations to understand correlations among ionic molecular structures, ion clustering, and transport properties in 2,3-dihydrophenazine (2,3-DHP), a promising AORFB anolyte. We show that experimentally measured viscosity can be reproduced from simulations at relevant concentrations and that the asymmetric structure of 2,3-DHP leads to a unique inhomogeneity in the solvation topology. However, order parameters and metrics need to be developed for better correlations over spatiotemporal scales with careful consideration of the inhomogeneity of organic anolyte molecules. We show that the increased size and asymmetry of the anolyte lead to breakdown of assumptions within methods for determining ion transport mechanisms previously developed for Li-ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsmaterialslett.3c00838</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2291-6496</orcidid><orcidid>https://orcid.org/0000-0001-6495-9892</orcidid><orcidid>https://orcid.org/0000-0003-3322-8450</orcidid><orcidid>https://orcid.org/0000-0002-6259-062X</orcidid><orcidid>https://orcid.org/0000000164959892</orcidid><orcidid>https://orcid.org/0000000333228450</orcidid><orcidid>https://orcid.org/0000000222916496</orcidid><orcidid>https://orcid.org/000000026259062X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2639-4979
ispartof ACS materials letters, 2023-11, Vol.5 (11), p.3050-3057
issn 2639-4979
2639-4979
language eng
recordid cdi_osti_scitechconnect_2332951
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects ENERGY STORAGE
title Correlations between Molecular Structure, Solvation Topology, and Transport Properties of Aqueous Organic Flow Battery Electrolyte Solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlations%20between%20Molecular%20Structure,%20Solvation%20Topology,%20and%20Transport%20Properties%20of%20Aqueous%20Organic%20Flow%20Battery%20Electrolyte%20Solutions&rft.jtitle=ACS%20materials%20letters&rft.au=Kumar,%20Nitesh&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2023-11-06&rft.volume=5&rft.issue=11&rft.spage=3050&rft.epage=3057&rft.pages=3050-3057&rft.issn=2639-4979&rft.eissn=2639-4979&rft_id=info:doi/10.1021/acsmaterialslett.3c00838&rft_dat=%3Cacs_osti_%3Eb620040392%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a239t-529f9b13511d5c499dbe5821685912a4be14d0a7f92ac718a69b0f8661c364f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true