Loading…

Self-powered perovskite photon-counting detectors

Metal-halide perovskites (MHPs) have been successfully exploited for converting photons to charges or vice versa in applications of solar cells, light-emitting diodes and solar fuels 1 – 3 , for which all these applications involve strong light. Here we show that self-powered polycrystalline perovsk...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2023-04, Vol.616 (7958), p.712-718
Main Authors: Zhou, Ying, Fei, Chengbin, Uddin, Md Aslam, Zhao, Liang, Ni, Zhenyi, Huang, Jinsong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-o240t-f431328b737be15df7c99525d5b6cd0d88492a27e18ea48a8c5b1866f1ba1a953
container_end_page 718
container_issue 7958
container_start_page 712
container_title Nature (London)
container_volume 616
creator Zhou, Ying
Fei, Chengbin
Uddin, Md Aslam
Zhao, Liang
Ni, Zhenyi
Huang, Jinsong
description Metal-halide perovskites (MHPs) have been successfully exploited for converting photons to charges or vice versa in applications of solar cells, light-emitting diodes and solar fuels 1 – 3 , for which all these applications involve strong light. Here we show that self-powered polycrystalline perovskite photodetectors can rival the commercial silicon photomultipliers (SiPMs) for photon counting. The photon-counting capability of perovskite photon-counting detectors (PCDs) is mainly determined by shallow traps, despite that deep traps also limit charge-collection efficiency. Two shallow traps with energy depth of 5.8 ± 0.8 millielectronvolts (meV) and 57.2 ± 0.1 meV are identified in polycrystalline methylammonium lead triiodide, which mainly stay at grain boundaries and the surface, respectively. We show that these shallow traps can be reduced by grain-size enhancement and surface passivation using diphenyl sulfide, respectively. It greatly suppresses dark count rate (DCR) from >20,000 counts per second per square millimetre (cps mm −2 ) to 2 cps mm −2 at room temperature, enabling much better response to weak light than SiPMs. The perovskite PCDs can collect γ-ray spectra with better energy resolution than SiPMs and maintain performance at high temperatures up to 85 °C. The zero-bias operation of perovskite detectors enables no drift of noise and detection property. This study opens a new application of photon counting for perovskites that uses their unique defect properties. Suppression of shallow traps responsible for dark count rates in polycrystalline methylammonium lead triiodide using diphenyl sulfide enables the production of metal-halide perovskite photon-counting detectors that allow sensitive detection of γ-ray spectra.
doi_str_mv 10.1038/s41586-023-05847-6
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2337948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2797144711</sourcerecordid><originalsourceid>FETCH-LOGICAL-o240t-f431328b737be15df7c99525d5b6cd0d88492a27e18ea48a8c5b1866f1ba1a953</originalsourceid><addsrcrecordid>eNpdkctOwzAQRS0EoqXwAyxQBRs2hhm_s0QVL6kSC2BtJY7TprRxiBMQf4-hICRWs5ijO49DyDHCBQI3l1GgNIoC4xSkEZqqHTJGoRUVyuhdMgZghoLhakQOYlwBgEQt9smIa2AAHMcEH_26om14950vp63vwlt8qXs_bZehDw11YWj6ullMS99714cuHpK9Kl9Hf_RTJ-T55vppdkfnD7f3s6s5DUxATyvBkTNTaK4Lj7KstMsyyWQpC-VKKI0RGcuZ9mh8LkxunCzQKFVhkWOeST4hp9vcEPvaRpeWcksXmiatYRnnOhMmQedbqO3C6-Bjbzd1dH69zhsfhmiZzjQKoRETevYPXYWha9IJlhnQAnkamqiTH2ooNr60bVdv8u7D_n4sAXwLxNRqFr77i0GwX17s1otNXuy3F6v4JyhQe44</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807413953</pqid></control><display><type>article</type><title>Self-powered perovskite photon-counting detectors</title><source>Nature</source><creator>Zhou, Ying ; Fei, Chengbin ; Uddin, Md Aslam ; Zhao, Liang ; Ni, Zhenyi ; Huang, Jinsong</creator><creatorcontrib>Zhou, Ying ; Fei, Chengbin ; Uddin, Md Aslam ; Zhao, Liang ; Ni, Zhenyi ; Huang, Jinsong ; Energy Frontier Research Centers (EFRC) (United States). Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE) ; University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><description>Metal-halide perovskites (MHPs) have been successfully exploited for converting photons to charges or vice versa in applications of solar cells, light-emitting diodes and solar fuels 1 – 3 , for which all these applications involve strong light. Here we show that self-powered polycrystalline perovskite photodetectors can rival the commercial silicon photomultipliers (SiPMs) for photon counting. The photon-counting capability of perovskite photon-counting detectors (PCDs) is mainly determined by shallow traps, despite that deep traps also limit charge-collection efficiency. Two shallow traps with energy depth of 5.8 ± 0.8 millielectronvolts (meV) and 57.2 ± 0.1 meV are identified in polycrystalline methylammonium lead triiodide, which mainly stay at grain boundaries and the surface, respectively. We show that these shallow traps can be reduced by grain-size enhancement and surface passivation using diphenyl sulfide, respectively. It greatly suppresses dark count rate (DCR) from &gt;20,000 counts per second per square millimetre (cps mm −2 ) to 2 cps mm −2 at room temperature, enabling much better response to weak light than SiPMs. The perovskite PCDs can collect γ-ray spectra with better energy resolution than SiPMs and maintain performance at high temperatures up to 85 °C. The zero-bias operation of perovskite detectors enables no drift of noise and detection property. This study opens a new application of photon counting for perovskites that uses their unique defect properties. Suppression of shallow traps responsible for dark count rates in polycrystalline methylammonium lead triiodide using diphenyl sulfide enables the production of metal-halide perovskite photon-counting detectors that allow sensitive detection of γ-ray spectra.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-05847-6</identifier><identifier>PMID: 37020031</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 140/146 ; 639/301/1005/1009 ; 639/624/1075/1083 ; Bias ; Charge efficiency ; Contemporary problems ; Crystal defects ; Defects ; Efficiency ; Electric fields ; Energy resolution ; Grain boundaries ; Grain size ; High temperature ; Humanities and Social Sciences ; Light emitting diodes ; Metal halides ; Morphology ; multidisciplinary ; optical sensors ; OTHER INSTRUMENTATION ; Perovskites ; Photomultiplier tubes ; Photons ; Photovoltaic cells ; Polycrystals ; Radiation ; Room temperature ; Science ; Science (multidisciplinary) ; Sensors ; sensors and biosensors ; Silicon ; Solar cells ; Spectrum analysis ; Traps</subject><ispartof>Nature (London), 2023-04, Vol.616 (7958), p.712-718</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Apr 27, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-o240t-f431328b737be15df7c99525d5b6cd0d88492a27e18ea48a8c5b1866f1ba1a953</cites><orcidid>0000-0002-0509-8778 ; 0000-0002-9780-2864 ; 0000-0003-1793-219X ; 0000000297802864 ; 0000000205098778 ; 000000031793219X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37020031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2337948$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Fei, Chengbin</creatorcontrib><creatorcontrib>Uddin, Md Aslam</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Ni, Zhenyi</creatorcontrib><creatorcontrib>Huang, Jinsong</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE)</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><title>Self-powered perovskite photon-counting detectors</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Metal-halide perovskites (MHPs) have been successfully exploited for converting photons to charges or vice versa in applications of solar cells, light-emitting diodes and solar fuels 1 – 3 , for which all these applications involve strong light. Here we show that self-powered polycrystalline perovskite photodetectors can rival the commercial silicon photomultipliers (SiPMs) for photon counting. The photon-counting capability of perovskite photon-counting detectors (PCDs) is mainly determined by shallow traps, despite that deep traps also limit charge-collection efficiency. Two shallow traps with energy depth of 5.8 ± 0.8 millielectronvolts (meV) and 57.2 ± 0.1 meV are identified in polycrystalline methylammonium lead triiodide, which mainly stay at grain boundaries and the surface, respectively. We show that these shallow traps can be reduced by grain-size enhancement and surface passivation using diphenyl sulfide, respectively. It greatly suppresses dark count rate (DCR) from &gt;20,000 counts per second per square millimetre (cps mm −2 ) to 2 cps mm −2 at room temperature, enabling much better response to weak light than SiPMs. The perovskite PCDs can collect γ-ray spectra with better energy resolution than SiPMs and maintain performance at high temperatures up to 85 °C. The zero-bias operation of perovskite detectors enables no drift of noise and detection property. This study opens a new application of photon counting for perovskites that uses their unique defect properties. Suppression of shallow traps responsible for dark count rates in polycrystalline methylammonium lead triiodide using diphenyl sulfide enables the production of metal-halide perovskite photon-counting detectors that allow sensitive detection of γ-ray spectra.</description><subject>140/125</subject><subject>140/146</subject><subject>639/301/1005/1009</subject><subject>639/624/1075/1083</subject><subject>Bias</subject><subject>Charge efficiency</subject><subject>Contemporary problems</subject><subject>Crystal defects</subject><subject>Defects</subject><subject>Efficiency</subject><subject>Electric fields</subject><subject>Energy resolution</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>High temperature</subject><subject>Humanities and Social Sciences</subject><subject>Light emitting diodes</subject><subject>Metal halides</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>optical sensors</subject><subject>OTHER INSTRUMENTATION</subject><subject>Perovskites</subject><subject>Photomultiplier tubes</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Polycrystals</subject><subject>Radiation</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>sensors and biosensors</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Spectrum analysis</subject><subject>Traps</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkctOwzAQRS0EoqXwAyxQBRs2hhm_s0QVL6kSC2BtJY7TprRxiBMQf4-hICRWs5ijO49DyDHCBQI3l1GgNIoC4xSkEZqqHTJGoRUVyuhdMgZghoLhakQOYlwBgEQt9smIa2AAHMcEH_26om14950vp63vwlt8qXs_bZehDw11YWj6ullMS99714cuHpK9Kl9Hf_RTJ-T55vppdkfnD7f3s6s5DUxATyvBkTNTaK4Lj7KstMsyyWQpC-VKKI0RGcuZ9mh8LkxunCzQKFVhkWOeST4hp9vcEPvaRpeWcksXmiatYRnnOhMmQedbqO3C6-Bjbzd1dH69zhsfhmiZzjQKoRETevYPXYWha9IJlhnQAnkamqiTH2ooNr60bVdv8u7D_n4sAXwLxNRqFr77i0GwX17s1otNXuy3F6v4JyhQe44</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Zhou, Ying</creator><creator>Fei, Chengbin</creator><creator>Uddin, Md Aslam</creator><creator>Zhao, Liang</creator><creator>Ni, Zhenyi</creator><creator>Huang, Jinsong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0509-8778</orcidid><orcidid>https://orcid.org/0000-0002-9780-2864</orcidid><orcidid>https://orcid.org/0000-0003-1793-219X</orcidid><orcidid>https://orcid.org/0000000297802864</orcidid><orcidid>https://orcid.org/0000000205098778</orcidid><orcidid>https://orcid.org/000000031793219X</orcidid></search><sort><creationdate>20230427</creationdate><title>Self-powered perovskite photon-counting detectors</title><author>Zhou, Ying ; Fei, Chengbin ; Uddin, Md Aslam ; Zhao, Liang ; Ni, Zhenyi ; Huang, Jinsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o240t-f431328b737be15df7c99525d5b6cd0d88492a27e18ea48a8c5b1866f1ba1a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>140/125</topic><topic>140/146</topic><topic>639/301/1005/1009</topic><topic>639/624/1075/1083</topic><topic>Bias</topic><topic>Charge efficiency</topic><topic>Contemporary problems</topic><topic>Crystal defects</topic><topic>Defects</topic><topic>Efficiency</topic><topic>Electric fields</topic><topic>Energy resolution</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>High temperature</topic><topic>Humanities and Social Sciences</topic><topic>Light emitting diodes</topic><topic>Metal halides</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>optical sensors</topic><topic>OTHER INSTRUMENTATION</topic><topic>Perovskites</topic><topic>Photomultiplier tubes</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Polycrystals</topic><topic>Radiation</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>sensors and biosensors</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Spectrum analysis</topic><topic>Traps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Fei, Chengbin</creatorcontrib><creatorcontrib>Uddin, Md Aslam</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Ni, Zhenyi</creatorcontrib><creatorcontrib>Huang, Jinsong</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE)</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ying</au><au>Fei, Chengbin</au><au>Uddin, Md Aslam</au><au>Zhao, Liang</au><au>Ni, Zhenyi</au><au>Huang, Jinsong</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE)</aucorp><aucorp>University of North Carolina, Chapel Hill, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-powered perovskite photon-counting detectors</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-04-27</date><risdate>2023</risdate><volume>616</volume><issue>7958</issue><spage>712</spage><epage>718</epage><pages>712-718</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Metal-halide perovskites (MHPs) have been successfully exploited for converting photons to charges or vice versa in applications of solar cells, light-emitting diodes and solar fuels 1 – 3 , for which all these applications involve strong light. Here we show that self-powered polycrystalline perovskite photodetectors can rival the commercial silicon photomultipliers (SiPMs) for photon counting. The photon-counting capability of perovskite photon-counting detectors (PCDs) is mainly determined by shallow traps, despite that deep traps also limit charge-collection efficiency. Two shallow traps with energy depth of 5.8 ± 0.8 millielectronvolts (meV) and 57.2 ± 0.1 meV are identified in polycrystalline methylammonium lead triiodide, which mainly stay at grain boundaries and the surface, respectively. We show that these shallow traps can be reduced by grain-size enhancement and surface passivation using diphenyl sulfide, respectively. It greatly suppresses dark count rate (DCR) from &gt;20,000 counts per second per square millimetre (cps mm −2 ) to 2 cps mm −2 at room temperature, enabling much better response to weak light than SiPMs. The perovskite PCDs can collect γ-ray spectra with better energy resolution than SiPMs and maintain performance at high temperatures up to 85 °C. The zero-bias operation of perovskite detectors enables no drift of noise and detection property. This study opens a new application of photon counting for perovskites that uses their unique defect properties. Suppression of shallow traps responsible for dark count rates in polycrystalline methylammonium lead triiodide using diphenyl sulfide enables the production of metal-halide perovskite photon-counting detectors that allow sensitive detection of γ-ray spectra.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37020031</pmid><doi>10.1038/s41586-023-05847-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0509-8778</orcidid><orcidid>https://orcid.org/0000-0002-9780-2864</orcidid><orcidid>https://orcid.org/0000-0003-1793-219X</orcidid><orcidid>https://orcid.org/0000000297802864</orcidid><orcidid>https://orcid.org/0000000205098778</orcidid><orcidid>https://orcid.org/000000031793219X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2023-04, Vol.616 (7958), p.712-718
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_osti_scitechconnect_2337948
source Nature
subjects 140/125
140/146
639/301/1005/1009
639/624/1075/1083
Bias
Charge efficiency
Contemporary problems
Crystal defects
Defects
Efficiency
Electric fields
Energy resolution
Grain boundaries
Grain size
High temperature
Humanities and Social Sciences
Light emitting diodes
Metal halides
Morphology
multidisciplinary
optical sensors
OTHER INSTRUMENTATION
Perovskites
Photomultiplier tubes
Photons
Photovoltaic cells
Polycrystals
Radiation
Room temperature
Science
Science (multidisciplinary)
Sensors
sensors and biosensors
Silicon
Solar cells
Spectrum analysis
Traps
title Self-powered perovskite photon-counting detectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-powered%20perovskite%20photon-counting%20detectors&rft.jtitle=Nature%20(London)&rft.au=Zhou,%20Ying&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Hybrid%20Organic%20Inorganic%20Semiconductors%20for%20Energy%20(CHOISE)&rft.date=2023-04-27&rft.volume=616&rft.issue=7958&rft.spage=712&rft.epage=718&rft.pages=712-718&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-05847-6&rft_dat=%3Cproquest_osti_%3E2797144711%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o240t-f431328b737be15df7c99525d5b6cd0d88492a27e18ea48a8c5b1866f1ba1a953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2807413953&rft_id=info:pmid/37020031&rfr_iscdi=true