Loading…
Self-powered perovskite photon-counting detectors
Metal-halide perovskites (MHPs) have been successfully exploited for converting photons to charges or vice versa in applications of solar cells, light-emitting diodes and solar fuels 1 – 3 , for which all these applications involve strong light. Here we show that self-powered polycrystalline perovsk...
Saved in:
Published in: | Nature (London) 2023-04, Vol.616 (7958), p.712-718 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-o240t-f431328b737be15df7c99525d5b6cd0d88492a27e18ea48a8c5b1866f1ba1a953 |
container_end_page | 718 |
container_issue | 7958 |
container_start_page | 712 |
container_title | Nature (London) |
container_volume | 616 |
creator | Zhou, Ying Fei, Chengbin Uddin, Md Aslam Zhao, Liang Ni, Zhenyi Huang, Jinsong |
description | Metal-halide perovskites (MHPs) have been successfully exploited for converting photons to charges or vice versa in applications of solar cells, light-emitting diodes and solar fuels
1
–
3
, for which all these applications involve strong light. Here we show that self-powered polycrystalline perovskite photodetectors can rival the commercial silicon photomultipliers (SiPMs) for photon counting. The photon-counting capability of perovskite photon-counting detectors (PCDs) is mainly determined by shallow traps, despite that deep traps also limit charge-collection efficiency. Two shallow traps with energy depth of 5.8 ± 0.8 millielectronvolts (meV) and 57.2 ± 0.1 meV are identified in polycrystalline methylammonium lead triiodide, which mainly stay at grain boundaries and the surface, respectively. We show that these shallow traps can be reduced by grain-size enhancement and surface passivation using diphenyl sulfide, respectively. It greatly suppresses dark count rate (DCR) from >20,000 counts per second per square millimetre (cps mm
−2
) to 2 cps mm
−2
at room temperature, enabling much better response to weak light than SiPMs. The perovskite PCDs can collect γ-ray spectra with better energy resolution than SiPMs and maintain performance at high temperatures up to 85 °C. The zero-bias operation of perovskite detectors enables no drift of noise and detection property. This study opens a new application of photon counting for perovskites that uses their unique defect properties.
Suppression of shallow traps responsible for dark count rates in polycrystalline methylammonium lead triiodide using diphenyl sulfide enables the production of metal-halide perovskite photon-counting detectors that allow sensitive detection of γ-ray spectra. |
doi_str_mv | 10.1038/s41586-023-05847-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2337948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2797144711</sourcerecordid><originalsourceid>FETCH-LOGICAL-o240t-f431328b737be15df7c99525d5b6cd0d88492a27e18ea48a8c5b1866f1ba1a953</originalsourceid><addsrcrecordid>eNpdkctOwzAQRS0EoqXwAyxQBRs2hhm_s0QVL6kSC2BtJY7TprRxiBMQf4-hICRWs5ijO49DyDHCBQI3l1GgNIoC4xSkEZqqHTJGoRUVyuhdMgZghoLhakQOYlwBgEQt9smIa2AAHMcEH_26om14950vp63vwlt8qXs_bZehDw11YWj6ullMS99714cuHpK9Kl9Hf_RTJ-T55vppdkfnD7f3s6s5DUxATyvBkTNTaK4Lj7KstMsyyWQpC-VKKI0RGcuZ9mh8LkxunCzQKFVhkWOeST4hp9vcEPvaRpeWcksXmiatYRnnOhMmQedbqO3C6-Bjbzd1dH69zhsfhmiZzjQKoRETevYPXYWha9IJlhnQAnkamqiTH2ooNr60bVdv8u7D_n4sAXwLxNRqFr77i0GwX17s1otNXuy3F6v4JyhQe44</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807413953</pqid></control><display><type>article</type><title>Self-powered perovskite photon-counting detectors</title><source>Nature</source><creator>Zhou, Ying ; Fei, Chengbin ; Uddin, Md Aslam ; Zhao, Liang ; Ni, Zhenyi ; Huang, Jinsong</creator><creatorcontrib>Zhou, Ying ; Fei, Chengbin ; Uddin, Md Aslam ; Zhao, Liang ; Ni, Zhenyi ; Huang, Jinsong ; Energy Frontier Research Centers (EFRC) (United States). Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE) ; University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><description>Metal-halide perovskites (MHPs) have been successfully exploited for converting photons to charges or vice versa in applications of solar cells, light-emitting diodes and solar fuels
1
–
3
, for which all these applications involve strong light. Here we show that self-powered polycrystalline perovskite photodetectors can rival the commercial silicon photomultipliers (SiPMs) for photon counting. The photon-counting capability of perovskite photon-counting detectors (PCDs) is mainly determined by shallow traps, despite that deep traps also limit charge-collection efficiency. Two shallow traps with energy depth of 5.8 ± 0.8 millielectronvolts (meV) and 57.2 ± 0.1 meV are identified in polycrystalline methylammonium lead triiodide, which mainly stay at grain boundaries and the surface, respectively. We show that these shallow traps can be reduced by grain-size enhancement and surface passivation using diphenyl sulfide, respectively. It greatly suppresses dark count rate (DCR) from >20,000 counts per second per square millimetre (cps mm
−2
) to 2 cps mm
−2
at room temperature, enabling much better response to weak light than SiPMs. The perovskite PCDs can collect γ-ray spectra with better energy resolution than SiPMs and maintain performance at high temperatures up to 85 °C. The zero-bias operation of perovskite detectors enables no drift of noise and detection property. This study opens a new application of photon counting for perovskites that uses their unique defect properties.
Suppression of shallow traps responsible for dark count rates in polycrystalline methylammonium lead triiodide using diphenyl sulfide enables the production of metal-halide perovskite photon-counting detectors that allow sensitive detection of γ-ray spectra.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-05847-6</identifier><identifier>PMID: 37020031</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 140/146 ; 639/301/1005/1009 ; 639/624/1075/1083 ; Bias ; Charge efficiency ; Contemporary problems ; Crystal defects ; Defects ; Efficiency ; Electric fields ; Energy resolution ; Grain boundaries ; Grain size ; High temperature ; Humanities and Social Sciences ; Light emitting diodes ; Metal halides ; Morphology ; multidisciplinary ; optical sensors ; OTHER INSTRUMENTATION ; Perovskites ; Photomultiplier tubes ; Photons ; Photovoltaic cells ; Polycrystals ; Radiation ; Room temperature ; Science ; Science (multidisciplinary) ; Sensors ; sensors and biosensors ; Silicon ; Solar cells ; Spectrum analysis ; Traps</subject><ispartof>Nature (London), 2023-04, Vol.616 (7958), p.712-718</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Apr 27, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-o240t-f431328b737be15df7c99525d5b6cd0d88492a27e18ea48a8c5b1866f1ba1a953</cites><orcidid>0000-0002-0509-8778 ; 0000-0002-9780-2864 ; 0000-0003-1793-219X ; 0000000297802864 ; 0000000205098778 ; 000000031793219X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37020031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2337948$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Fei, Chengbin</creatorcontrib><creatorcontrib>Uddin, Md Aslam</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Ni, Zhenyi</creatorcontrib><creatorcontrib>Huang, Jinsong</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE)</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><title>Self-powered perovskite photon-counting detectors</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Metal-halide perovskites (MHPs) have been successfully exploited for converting photons to charges or vice versa in applications of solar cells, light-emitting diodes and solar fuels
1
–
3
, for which all these applications involve strong light. Here we show that self-powered polycrystalline perovskite photodetectors can rival the commercial silicon photomultipliers (SiPMs) for photon counting. The photon-counting capability of perovskite photon-counting detectors (PCDs) is mainly determined by shallow traps, despite that deep traps also limit charge-collection efficiency. Two shallow traps with energy depth of 5.8 ± 0.8 millielectronvolts (meV) and 57.2 ± 0.1 meV are identified in polycrystalline methylammonium lead triiodide, which mainly stay at grain boundaries and the surface, respectively. We show that these shallow traps can be reduced by grain-size enhancement and surface passivation using diphenyl sulfide, respectively. It greatly suppresses dark count rate (DCR) from >20,000 counts per second per square millimetre (cps mm
−2
) to 2 cps mm
−2
at room temperature, enabling much better response to weak light than SiPMs. The perovskite PCDs can collect γ-ray spectra with better energy resolution than SiPMs and maintain performance at high temperatures up to 85 °C. The zero-bias operation of perovskite detectors enables no drift of noise and detection property. This study opens a new application of photon counting for perovskites that uses their unique defect properties.
Suppression of shallow traps responsible for dark count rates in polycrystalline methylammonium lead triiodide using diphenyl sulfide enables the production of metal-halide perovskite photon-counting detectors that allow sensitive detection of γ-ray spectra.</description><subject>140/125</subject><subject>140/146</subject><subject>639/301/1005/1009</subject><subject>639/624/1075/1083</subject><subject>Bias</subject><subject>Charge efficiency</subject><subject>Contemporary problems</subject><subject>Crystal defects</subject><subject>Defects</subject><subject>Efficiency</subject><subject>Electric fields</subject><subject>Energy resolution</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>High temperature</subject><subject>Humanities and Social Sciences</subject><subject>Light emitting diodes</subject><subject>Metal halides</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>optical sensors</subject><subject>OTHER INSTRUMENTATION</subject><subject>Perovskites</subject><subject>Photomultiplier tubes</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Polycrystals</subject><subject>Radiation</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>sensors and biosensors</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Spectrum analysis</subject><subject>Traps</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkctOwzAQRS0EoqXwAyxQBRs2hhm_s0QVL6kSC2BtJY7TprRxiBMQf4-hICRWs5ijO49DyDHCBQI3l1GgNIoC4xSkEZqqHTJGoRUVyuhdMgZghoLhakQOYlwBgEQt9smIa2AAHMcEH_26om14950vp63vwlt8qXs_bZehDw11YWj6ullMS99714cuHpK9Kl9Hf_RTJ-T55vppdkfnD7f3s6s5DUxATyvBkTNTaK4Lj7KstMsyyWQpC-VKKI0RGcuZ9mh8LkxunCzQKFVhkWOeST4hp9vcEPvaRpeWcksXmiatYRnnOhMmQedbqO3C6-Bjbzd1dH69zhsfhmiZzjQKoRETevYPXYWha9IJlhnQAnkamqiTH2ooNr60bVdv8u7D_n4sAXwLxNRqFr77i0GwX17s1otNXuy3F6v4JyhQe44</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Zhou, Ying</creator><creator>Fei, Chengbin</creator><creator>Uddin, Md Aslam</creator><creator>Zhao, Liang</creator><creator>Ni, Zhenyi</creator><creator>Huang, Jinsong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0509-8778</orcidid><orcidid>https://orcid.org/0000-0002-9780-2864</orcidid><orcidid>https://orcid.org/0000-0003-1793-219X</orcidid><orcidid>https://orcid.org/0000000297802864</orcidid><orcidid>https://orcid.org/0000000205098778</orcidid><orcidid>https://orcid.org/000000031793219X</orcidid></search><sort><creationdate>20230427</creationdate><title>Self-powered perovskite photon-counting detectors</title><author>Zhou, Ying ; Fei, Chengbin ; Uddin, Md Aslam ; Zhao, Liang ; Ni, Zhenyi ; Huang, Jinsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o240t-f431328b737be15df7c99525d5b6cd0d88492a27e18ea48a8c5b1866f1ba1a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>140/125</topic><topic>140/146</topic><topic>639/301/1005/1009</topic><topic>639/624/1075/1083</topic><topic>Bias</topic><topic>Charge efficiency</topic><topic>Contemporary problems</topic><topic>Crystal defects</topic><topic>Defects</topic><topic>Efficiency</topic><topic>Electric fields</topic><topic>Energy resolution</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>High temperature</topic><topic>Humanities and Social Sciences</topic><topic>Light emitting diodes</topic><topic>Metal halides</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>optical sensors</topic><topic>OTHER INSTRUMENTATION</topic><topic>Perovskites</topic><topic>Photomultiplier tubes</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Polycrystals</topic><topic>Radiation</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>sensors and biosensors</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Spectrum analysis</topic><topic>Traps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Fei, Chengbin</creatorcontrib><creatorcontrib>Uddin, Md Aslam</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Ni, Zhenyi</creatorcontrib><creatorcontrib>Huang, Jinsong</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE)</creatorcontrib><creatorcontrib>University of North Carolina, Chapel Hill, NC (United States)</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ying</au><au>Fei, Chengbin</au><au>Uddin, Md Aslam</au><au>Zhao, Liang</au><au>Ni, Zhenyi</au><au>Huang, Jinsong</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE)</aucorp><aucorp>University of North Carolina, Chapel Hill, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-powered perovskite photon-counting detectors</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-04-27</date><risdate>2023</risdate><volume>616</volume><issue>7958</issue><spage>712</spage><epage>718</epage><pages>712-718</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Metal-halide perovskites (MHPs) have been successfully exploited for converting photons to charges or vice versa in applications of solar cells, light-emitting diodes and solar fuels
1
–
3
, for which all these applications involve strong light. Here we show that self-powered polycrystalline perovskite photodetectors can rival the commercial silicon photomultipliers (SiPMs) for photon counting. The photon-counting capability of perovskite photon-counting detectors (PCDs) is mainly determined by shallow traps, despite that deep traps also limit charge-collection efficiency. Two shallow traps with energy depth of 5.8 ± 0.8 millielectronvolts (meV) and 57.2 ± 0.1 meV are identified in polycrystalline methylammonium lead triiodide, which mainly stay at grain boundaries and the surface, respectively. We show that these shallow traps can be reduced by grain-size enhancement and surface passivation using diphenyl sulfide, respectively. It greatly suppresses dark count rate (DCR) from >20,000 counts per second per square millimetre (cps mm
−2
) to 2 cps mm
−2
at room temperature, enabling much better response to weak light than SiPMs. The perovskite PCDs can collect γ-ray spectra with better energy resolution than SiPMs and maintain performance at high temperatures up to 85 °C. The zero-bias operation of perovskite detectors enables no drift of noise and detection property. This study opens a new application of photon counting for perovskites that uses their unique defect properties.
Suppression of shallow traps responsible for dark count rates in polycrystalline methylammonium lead triiodide using diphenyl sulfide enables the production of metal-halide perovskite photon-counting detectors that allow sensitive detection of γ-ray spectra.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37020031</pmid><doi>10.1038/s41586-023-05847-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0509-8778</orcidid><orcidid>https://orcid.org/0000-0002-9780-2864</orcidid><orcidid>https://orcid.org/0000-0003-1793-219X</orcidid><orcidid>https://orcid.org/0000000297802864</orcidid><orcidid>https://orcid.org/0000000205098778</orcidid><orcidid>https://orcid.org/000000031793219X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2023-04, Vol.616 (7958), p.712-718 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_2337948 |
source | Nature |
subjects | 140/125 140/146 639/301/1005/1009 639/624/1075/1083 Bias Charge efficiency Contemporary problems Crystal defects Defects Efficiency Electric fields Energy resolution Grain boundaries Grain size High temperature Humanities and Social Sciences Light emitting diodes Metal halides Morphology multidisciplinary optical sensors OTHER INSTRUMENTATION Perovskites Photomultiplier tubes Photons Photovoltaic cells Polycrystals Radiation Room temperature Science Science (multidisciplinary) Sensors sensors and biosensors Silicon Solar cells Spectrum analysis Traps |
title | Self-powered perovskite photon-counting detectors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-powered%20perovskite%20photon-counting%20detectors&rft.jtitle=Nature%20(London)&rft.au=Zhou,%20Ying&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Hybrid%20Organic%20Inorganic%20Semiconductors%20for%20Energy%20(CHOISE)&rft.date=2023-04-27&rft.volume=616&rft.issue=7958&rft.spage=712&rft.epage=718&rft.pages=712-718&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-05847-6&rft_dat=%3Cproquest_osti_%3E2797144711%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o240t-f431328b737be15df7c99525d5b6cd0d88492a27e18ea48a8c5b1866f1ba1a953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2807413953&rft_id=info:pmid/37020031&rfr_iscdi=true |