Loading…

Silicon-Lattice-Matched Boron-Doped Gallium Phosphide: A Scalable Acousto-Optic Platform

Abstract The compact size, scalability, and strongly confined fields in integrated photonic devices enable new functionalities in photonic networking and information processing, both classical and quantum. Gallium phosphide (GaP) is a promising material for active integrated photonics due to its hig...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2023-09, Vol.36 (5)
Main Authors: Yama, Nicholas S., Chen, I‐Tung, Chakravarthi, Srivatsa, Li, Bingzhao, Pederson, Christian, Matthews, Bethany E., Spurgeon, Steven R., Perea, Daniel E., Wirth, Mark G., Sushko, Peter V., Li, Mo, Fu, Kai‐Mei C.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 5
container_start_page
container_title Advanced materials (Weinheim)
container_volume 36
creator Yama, Nicholas S.
Chen, I‐Tung
Chakravarthi, Srivatsa
Li, Bingzhao
Pederson, Christian
Matthews, Bethany E.
Spurgeon, Steven R.
Perea, Daniel E.
Wirth, Mark G.
Sushko, Peter V.
Li, Mo
Fu, Kai‐Mei C.
description Abstract The compact size, scalability, and strongly confined fields in integrated photonic devices enable new functionalities in photonic networking and information processing, both classical and quantum. Gallium phosphide (GaP) is a promising material for active integrated photonics due to its high refractive index, wide bandgap, strong nonlinear properties, and large acousto‐optic figure of merit. This study demonstrates that silicon‐lattice‐matched boron‐doped GaP (BGaP), grown at the 12‐inch wafer scale, provides similar functionalities as GaP. BGaP optical resonators exhibit intrinsic quality factors exceeding 25,000 and 200,000 at visible and telecom wavelengths, respectively. It further demonstrates the electromechanical generation of low‐loss acoustic waves and an integrated acousto‐optic (AO) modulator. High‐resolution spatial and compositional mapping, combined with ab initio calculations, indicate two candidates for the excess optical loss in the visible band: the silicon‐GaP interface and boron dimers. These results demonstrate the promise of the BGaP material platform for the development of scalable AO technologies at telecom and provide potential pathways toward higher performance at shorter wavelengths.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2338034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2338034</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_23380343</originalsourceid><addsrcrecordid>eNqNjcsKwjAURLNQsD7-IbgPBFNL666-F4qFunBX4m1KImlvadL_Nws_wNUMh-HMhEQ8E1uWJXE6I3PnPpzzLOFJRF6lsQawYzfpvQHF7tKDVjXd4xDoEfvQL9JaM7a00Oh6bWq1ozktQVr5tormgKPzyB59ENDCSt_g0C7JtJHWqdUvF2R9Pj0PV4bOm8qB8Qp0OO4U-GojRMpFLP4afQFGmkCI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Silicon-Lattice-Matched Boron-Doped Gallium Phosphide: A Scalable Acousto-Optic Platform</title><source>Wiley</source><creator>Yama, Nicholas S. ; Chen, I‐Tung ; Chakravarthi, Srivatsa ; Li, Bingzhao ; Pederson, Christian ; Matthews, Bethany E. ; Spurgeon, Steven R. ; Perea, Daniel E. ; Wirth, Mark G. ; Sushko, Peter V. ; Li, Mo ; Fu, Kai‐Mei C.</creator><creatorcontrib>Yama, Nicholas S. ; Chen, I‐Tung ; Chakravarthi, Srivatsa ; Li, Bingzhao ; Pederson, Christian ; Matthews, Bethany E. ; Spurgeon, Steven R. ; Perea, Daniel E. ; Wirth, Mark G. ; Sushko, Peter V. ; Li, Mo ; Fu, Kai‐Mei C. ; Univ. of Washington, Seattle, WA (United States) ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Abstract The compact size, scalability, and strongly confined fields in integrated photonic devices enable new functionalities in photonic networking and information processing, both classical and quantum. Gallium phosphide (GaP) is a promising material for active integrated photonics due to its high refractive index, wide bandgap, strong nonlinear properties, and large acousto‐optic figure of merit. This study demonstrates that silicon‐lattice‐matched boron‐doped GaP (BGaP), grown at the 12‐inch wafer scale, provides similar functionalities as GaP. BGaP optical resonators exhibit intrinsic quality factors exceeding 25,000 and 200,000 at visible and telecom wavelengths, respectively. It further demonstrates the electromechanical generation of low‐loss acoustic waves and an integrated acousto‐optic (AO) modulator. High‐resolution spatial and compositional mapping, combined with ab initio calculations, indicate two candidates for the excess optical loss in the visible band: the silicon‐GaP interface and boron dimers. These results demonstrate the promise of the BGaP material platform for the development of scalable AO technologies at telecom and provide potential pathways toward higher performance at shorter wavelengths.</description><identifier>ISSN: 0935-9648</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>acousto-optics ; gallium phosphide ; integrated photonics ; latticed-matched ; MATERIALS SCIENCE</subject><ispartof>Advanced materials (Weinheim), 2023-09, Vol.36 (5)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000337894039 ; 0000000261233313 ; 000000031218839X ; 0000000173384146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2338034$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yama, Nicholas S.</creatorcontrib><creatorcontrib>Chen, I‐Tung</creatorcontrib><creatorcontrib>Chakravarthi, Srivatsa</creatorcontrib><creatorcontrib>Li, Bingzhao</creatorcontrib><creatorcontrib>Pederson, Christian</creatorcontrib><creatorcontrib>Matthews, Bethany E.</creatorcontrib><creatorcontrib>Spurgeon, Steven R.</creatorcontrib><creatorcontrib>Perea, Daniel E.</creatorcontrib><creatorcontrib>Wirth, Mark G.</creatorcontrib><creatorcontrib>Sushko, Peter V.</creatorcontrib><creatorcontrib>Li, Mo</creatorcontrib><creatorcontrib>Fu, Kai‐Mei C.</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Silicon-Lattice-Matched Boron-Doped Gallium Phosphide: A Scalable Acousto-Optic Platform</title><title>Advanced materials (Weinheim)</title><description>Abstract The compact size, scalability, and strongly confined fields in integrated photonic devices enable new functionalities in photonic networking and information processing, both classical and quantum. Gallium phosphide (GaP) is a promising material for active integrated photonics due to its high refractive index, wide bandgap, strong nonlinear properties, and large acousto‐optic figure of merit. This study demonstrates that silicon‐lattice‐matched boron‐doped GaP (BGaP), grown at the 12‐inch wafer scale, provides similar functionalities as GaP. BGaP optical resonators exhibit intrinsic quality factors exceeding 25,000 and 200,000 at visible and telecom wavelengths, respectively. It further demonstrates the electromechanical generation of low‐loss acoustic waves and an integrated acousto‐optic (AO) modulator. High‐resolution spatial and compositional mapping, combined with ab initio calculations, indicate two candidates for the excess optical loss in the visible band: the silicon‐GaP interface and boron dimers. These results demonstrate the promise of the BGaP material platform for the development of scalable AO technologies at telecom and provide potential pathways toward higher performance at shorter wavelengths.</description><subject>acousto-optics</subject><subject>gallium phosphide</subject><subject>integrated photonics</subject><subject>latticed-matched</subject><subject>MATERIALS SCIENCE</subject><issn>0935-9648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNjcsKwjAURLNQsD7-IbgPBFNL666-F4qFunBX4m1KImlvadL_Nws_wNUMh-HMhEQ8E1uWJXE6I3PnPpzzLOFJRF6lsQawYzfpvQHF7tKDVjXd4xDoEfvQL9JaM7a00Oh6bWq1ozktQVr5tormgKPzyB59ENDCSt_g0C7JtJHWqdUvF2R9Pj0PV4bOm8qB8Qp0OO4U-GojRMpFLP4afQFGmkCI</recordid><startdate>20230903</startdate><enddate>20230903</enddate><creator>Yama, Nicholas S.</creator><creator>Chen, I‐Tung</creator><creator>Chakravarthi, Srivatsa</creator><creator>Li, Bingzhao</creator><creator>Pederson, Christian</creator><creator>Matthews, Bethany E.</creator><creator>Spurgeon, Steven R.</creator><creator>Perea, Daniel E.</creator><creator>Wirth, Mark G.</creator><creator>Sushko, Peter V.</creator><creator>Li, Mo</creator><creator>Fu, Kai‐Mei C.</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000337894039</orcidid><orcidid>https://orcid.org/0000000261233313</orcidid><orcidid>https://orcid.org/000000031218839X</orcidid><orcidid>https://orcid.org/0000000173384146</orcidid></search><sort><creationdate>20230903</creationdate><title>Silicon-Lattice-Matched Boron-Doped Gallium Phosphide: A Scalable Acousto-Optic Platform</title><author>Yama, Nicholas S. ; Chen, I‐Tung ; Chakravarthi, Srivatsa ; Li, Bingzhao ; Pederson, Christian ; Matthews, Bethany E. ; Spurgeon, Steven R. ; Perea, Daniel E. ; Wirth, Mark G. ; Sushko, Peter V. ; Li, Mo ; Fu, Kai‐Mei C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_23380343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>acousto-optics</topic><topic>gallium phosphide</topic><topic>integrated photonics</topic><topic>latticed-matched</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yama, Nicholas S.</creatorcontrib><creatorcontrib>Chen, I‐Tung</creatorcontrib><creatorcontrib>Chakravarthi, Srivatsa</creatorcontrib><creatorcontrib>Li, Bingzhao</creatorcontrib><creatorcontrib>Pederson, Christian</creatorcontrib><creatorcontrib>Matthews, Bethany E.</creatorcontrib><creatorcontrib>Spurgeon, Steven R.</creatorcontrib><creatorcontrib>Perea, Daniel E.</creatorcontrib><creatorcontrib>Wirth, Mark G.</creatorcontrib><creatorcontrib>Sushko, Peter V.</creatorcontrib><creatorcontrib>Li, Mo</creatorcontrib><creatorcontrib>Fu, Kai‐Mei C.</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yama, Nicholas S.</au><au>Chen, I‐Tung</au><au>Chakravarthi, Srivatsa</au><au>Li, Bingzhao</au><au>Pederson, Christian</au><au>Matthews, Bethany E.</au><au>Spurgeon, Steven R.</au><au>Perea, Daniel E.</au><au>Wirth, Mark G.</au><au>Sushko, Peter V.</au><au>Li, Mo</au><au>Fu, Kai‐Mei C.</au><aucorp>Univ. of Washington, Seattle, WA (United States)</aucorp><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon-Lattice-Matched Boron-Doped Gallium Phosphide: A Scalable Acousto-Optic Platform</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2023-09-03</date><risdate>2023</risdate><volume>36</volume><issue>5</issue><issn>0935-9648</issn><abstract>Abstract The compact size, scalability, and strongly confined fields in integrated photonic devices enable new functionalities in photonic networking and information processing, both classical and quantum. Gallium phosphide (GaP) is a promising material for active integrated photonics due to its high refractive index, wide bandgap, strong nonlinear properties, and large acousto‐optic figure of merit. This study demonstrates that silicon‐lattice‐matched boron‐doped GaP (BGaP), grown at the 12‐inch wafer scale, provides similar functionalities as GaP. BGaP optical resonators exhibit intrinsic quality factors exceeding 25,000 and 200,000 at visible and telecom wavelengths, respectively. It further demonstrates the electromechanical generation of low‐loss acoustic waves and an integrated acousto‐optic (AO) modulator. High‐resolution spatial and compositional mapping, combined with ab initio calculations, indicate two candidates for the excess optical loss in the visible band: the silicon‐GaP interface and boron dimers. These results demonstrate the promise of the BGaP material platform for the development of scalable AO technologies at telecom and provide potential pathways toward higher performance at shorter wavelengths.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/0000000337894039</orcidid><orcidid>https://orcid.org/0000000261233313</orcidid><orcidid>https://orcid.org/000000031218839X</orcidid><orcidid>https://orcid.org/0000000173384146</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-09, Vol.36 (5)
issn 0935-9648
language eng
recordid cdi_osti_scitechconnect_2338034
source Wiley
subjects acousto-optics
gallium phosphide
integrated photonics
latticed-matched
MATERIALS SCIENCE
title Silicon-Lattice-Matched Boron-Doped Gallium Phosphide: A Scalable Acousto-Optic Platform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon-Lattice-Matched%20Boron-Doped%20Gallium%20Phosphide:%20A%20Scalable%20Acousto-Optic%20Platform&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yama,%20Nicholas%20S.&rft.aucorp=Univ.%20of%20Washington,%20Seattle,%20WA%20(United%20States)&rft.date=2023-09-03&rft.volume=36&rft.issue=5&rft.issn=0935-9648&rft_id=info:doi/&rft_dat=%3Costi%3E2338034%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_23380343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true