Loading…

Tuning Surface, Phase, and Magnetization of Superparamagnetic Magnetite by Ionic Liquids: Single-Step Microwave-Assisted Synthesis

Achieving colloidal and chemical stability in ferrofluids by surface modification requires multiple steps, including purification, ex situ modification steps, and operation at high temperatures. In this study, a single-step microwave-assisted methodology is developed for iron oxide nanoparticle (ION...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2024-04, Vol.16 (16), p.20937-20948
Main Authors: Cagli, Eda, Klemm, Aidan, Ali, Adam, Gai, Zheng, Unocic, Kinga A., Kidder, Michelle K., Gurkan, Burcu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a312t-e24d9358c7d775542529046b5ea688b124743e90b7df075aa6b24a7dd9b843393
container_end_page 20948
container_issue 16
container_start_page 20937
container_title ACS applied materials & interfaces
container_volume 16
creator Cagli, Eda
Klemm, Aidan
Ali, Adam
Gai, Zheng
Unocic, Kinga A.
Kidder, Michelle K.
Gurkan, Burcu
description Achieving colloidal and chemical stability in ferrofluids by surface modification requires multiple steps, including purification, ex situ modification steps, and operation at high temperatures. In this study, a single-step microwave-assisted methodology is developed for iron oxide nanoparticle (IONP) synthesis utilizing a series of imidazolium-based ionic liquids (ILs) with chloride, bis­(trifluoromethylsulfonyl)­imide, and pyrrolide anions as the reaction media, thus eliminating the use of volatile organics while enabling rapid synthesis at 80 °C as well as in situ surface functionalization. The characterized surface functionality, hydrodynamic particle size, magnetization, and colloidal stability of the IONPs demonstrate a strong dependence on the IL structure, ion coordination strength, reactivity, and hydrophilicity. The IONPs present primarily a magnetite (Fe3O4) phase with superparamagnetism with the highest saturation magnetization at 81 and 73 emu/g at 10 and 300 K, respectively. Depending on the IL coating, magnetization and exchange anisotropy decrease by 20 and 2–3 emu/g (at 35 wt % IL), respectively, but still represent the highest magnetization achieved for coated IONPs by a coprecipitation method. Further, the surface-functionalized superparamagnetic magnetite nanoparticles show good dispersibility and colloidal stability in water and dimethyl sulfoxide at 0.1 mg/mL concentration over the examined 3 month period. This study reports on the intermolecular and chemical interactions between the particle surface and the ILs under synthetic conditions as they relate to the magnetic and thermal properties of the resulting IONPs that are well suited for a variety of applications, including separation and catalysis.
doi_str_mv 10.1021/acsami.4c02000
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2345313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037395573</sourcerecordid><originalsourceid>FETCH-LOGICAL-a312t-e24d9358c7d775542529046b5ea688b124743e90b7df075aa6b24a7dd9b843393</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS1ERUvhyhFZnBAiiz_jhFtV8VFpq1bacrYce9J1tbHT2AEtR_5yXGXbW09jj3_zNM8PoXeUrChh9IuxyQx-JSxhhJAX6IS2QlQNk-zl01mIY_Q6pTtCas6IfIWOeVMTJhg9Qf9u5uDDLd7MU28sfMbXW5NKMcHhS3MbIPu_JvsYcOwLNMI0mskMy4t9RDLgbo8vYiittb-fvUtf8abo7qDaZBjxpbdT_GN-Q3WWkk8ZHN7sQ95CubxBR73ZJXh7qKfo1_dvN-c_q_XVj4vzs3VlOGW5AiZcy2VjlVNKSlEstkTUnQRTN01HmVCCQ0s65XqipDF1x4RRzrVdIzhv-Sn6sOjGlL1OtmxttzaGADZrxoXklBfo4wKNU7yfIWU9-GRhtzMB4pw0J1zxVkr1gK4WtFhLaYJej5MfzLTXlOiHcPQSjj6EUwbeH7TnbgD3hD-mUYBPC1AG9V2cp1D-4zm1_yU1mX8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037395573</pqid></control><display><type>article</type><title>Tuning Surface, Phase, and Magnetization of Superparamagnetic Magnetite by Ionic Liquids: Single-Step Microwave-Assisted Synthesis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Cagli, Eda ; Klemm, Aidan ; Ali, Adam ; Gai, Zheng ; Unocic, Kinga A. ; Kidder, Michelle K. ; Gurkan, Burcu</creator><creatorcontrib>Cagli, Eda ; Klemm, Aidan ; Ali, Adam ; Gai, Zheng ; Unocic, Kinga A. ; Kidder, Michelle K. ; Gurkan, Burcu ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Achieving colloidal and chemical stability in ferrofluids by surface modification requires multiple steps, including purification, ex situ modification steps, and operation at high temperatures. In this study, a single-step microwave-assisted methodology is developed for iron oxide nanoparticle (IONP) synthesis utilizing a series of imidazolium-based ionic liquids (ILs) with chloride, bis­(trifluoromethylsulfonyl)­imide, and pyrrolide anions as the reaction media, thus eliminating the use of volatile organics while enabling rapid synthesis at 80 °C as well as in situ surface functionalization. The characterized surface functionality, hydrodynamic particle size, magnetization, and colloidal stability of the IONPs demonstrate a strong dependence on the IL structure, ion coordination strength, reactivity, and hydrophilicity. The IONPs present primarily a magnetite (Fe3O4) phase with superparamagnetism with the highest saturation magnetization at 81 and 73 emu/g at 10 and 300 K, respectively. Depending on the IL coating, magnetization and exchange anisotropy decrease by 20 and 2–3 emu/g (at 35 wt % IL), respectively, but still represent the highest magnetization achieved for coated IONPs by a coprecipitation method. Further, the surface-functionalized superparamagnetic magnetite nanoparticles show good dispersibility and colloidal stability in water and dimethyl sulfoxide at 0.1 mg/mL concentration over the examined 3 month period. This study reports on the intermolecular and chemical interactions between the particle surface and the ILs under synthetic conditions as they relate to the magnetic and thermal properties of the resulting IONPs that are well suited for a variety of applications, including separation and catalysis.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c02000</identifier><identifier>PMID: 38602421</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ferrofluid ; Functional Nanostructured Materials (including low-D carbon) ; imidazolium ; iron oxide ; MATERIALS SCIENCE ; nanoparticle synthesis ; surface functionalization</subject><ispartof>ACS applied materials &amp; interfaces, 2024-04, Vol.16 (16), p.20937-20948</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a312t-e24d9358c7d775542529046b5ea688b124743e90b7df075aa6b24a7dd9b843393</cites><orcidid>0000-0003-4886-3350 ; 0000-0002-6099-4559 ; 0000-0003-0851-835X ; 000000030851835X ; 0000000260994559 ; 0000000279114064 ; 0000000348863350 ; 0000000178194771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38602421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2345313$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cagli, Eda</creatorcontrib><creatorcontrib>Klemm, Aidan</creatorcontrib><creatorcontrib>Ali, Adam</creatorcontrib><creatorcontrib>Gai, Zheng</creatorcontrib><creatorcontrib>Unocic, Kinga A.</creatorcontrib><creatorcontrib>Kidder, Michelle K.</creatorcontrib><creatorcontrib>Gurkan, Burcu</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Tuning Surface, Phase, and Magnetization of Superparamagnetic Magnetite by Ionic Liquids: Single-Step Microwave-Assisted Synthesis</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Achieving colloidal and chemical stability in ferrofluids by surface modification requires multiple steps, including purification, ex situ modification steps, and operation at high temperatures. In this study, a single-step microwave-assisted methodology is developed for iron oxide nanoparticle (IONP) synthesis utilizing a series of imidazolium-based ionic liquids (ILs) with chloride, bis­(trifluoromethylsulfonyl)­imide, and pyrrolide anions as the reaction media, thus eliminating the use of volatile organics while enabling rapid synthesis at 80 °C as well as in situ surface functionalization. The characterized surface functionality, hydrodynamic particle size, magnetization, and colloidal stability of the IONPs demonstrate a strong dependence on the IL structure, ion coordination strength, reactivity, and hydrophilicity. The IONPs present primarily a magnetite (Fe3O4) phase with superparamagnetism with the highest saturation magnetization at 81 and 73 emu/g at 10 and 300 K, respectively. Depending on the IL coating, magnetization and exchange anisotropy decrease by 20 and 2–3 emu/g (at 35 wt % IL), respectively, but still represent the highest magnetization achieved for coated IONPs by a coprecipitation method. Further, the surface-functionalized superparamagnetic magnetite nanoparticles show good dispersibility and colloidal stability in water and dimethyl sulfoxide at 0.1 mg/mL concentration over the examined 3 month period. This study reports on the intermolecular and chemical interactions between the particle surface and the ILs under synthetic conditions as they relate to the magnetic and thermal properties of the resulting IONPs that are well suited for a variety of applications, including separation and catalysis.</description><subject>ferrofluid</subject><subject>Functional Nanostructured Materials (including low-D carbon)</subject><subject>imidazolium</subject><subject>iron oxide</subject><subject>MATERIALS SCIENCE</subject><subject>nanoparticle synthesis</subject><subject>surface functionalization</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kc1v1DAQxS1ERUvhyhFZnBAiiz_jhFtV8VFpq1bacrYce9J1tbHT2AEtR_5yXGXbW09jj3_zNM8PoXeUrChh9IuxyQx-JSxhhJAX6IS2QlQNk-zl01mIY_Q6pTtCas6IfIWOeVMTJhg9Qf9u5uDDLd7MU28sfMbXW5NKMcHhS3MbIPu_JvsYcOwLNMI0mskMy4t9RDLgbo8vYiittb-fvUtf8abo7qDaZBjxpbdT_GN-Q3WWkk8ZHN7sQ95CubxBR73ZJXh7qKfo1_dvN-c_q_XVj4vzs3VlOGW5AiZcy2VjlVNKSlEstkTUnQRTN01HmVCCQ0s65XqipDF1x4RRzrVdIzhv-Sn6sOjGlL1OtmxttzaGADZrxoXklBfo4wKNU7yfIWU9-GRhtzMB4pw0J1zxVkr1gK4WtFhLaYJej5MfzLTXlOiHcPQSjj6EUwbeH7TnbgD3hD-mUYBPC1AG9V2cp1D-4zm1_yU1mX8</recordid><startdate>20240411</startdate><enddate>20240411</enddate><creator>Cagli, Eda</creator><creator>Klemm, Aidan</creator><creator>Ali, Adam</creator><creator>Gai, Zheng</creator><creator>Unocic, Kinga A.</creator><creator>Kidder, Michelle K.</creator><creator>Gurkan, Burcu</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4886-3350</orcidid><orcidid>https://orcid.org/0000-0002-6099-4559</orcidid><orcidid>https://orcid.org/0000-0003-0851-835X</orcidid><orcidid>https://orcid.org/000000030851835X</orcidid><orcidid>https://orcid.org/0000000260994559</orcidid><orcidid>https://orcid.org/0000000279114064</orcidid><orcidid>https://orcid.org/0000000348863350</orcidid><orcidid>https://orcid.org/0000000178194771</orcidid></search><sort><creationdate>20240411</creationdate><title>Tuning Surface, Phase, and Magnetization of Superparamagnetic Magnetite by Ionic Liquids: Single-Step Microwave-Assisted Synthesis</title><author>Cagli, Eda ; Klemm, Aidan ; Ali, Adam ; Gai, Zheng ; Unocic, Kinga A. ; Kidder, Michelle K. ; Gurkan, Burcu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a312t-e24d9358c7d775542529046b5ea688b124743e90b7df075aa6b24a7dd9b843393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ferrofluid</topic><topic>Functional Nanostructured Materials (including low-D carbon)</topic><topic>imidazolium</topic><topic>iron oxide</topic><topic>MATERIALS SCIENCE</topic><topic>nanoparticle synthesis</topic><topic>surface functionalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cagli, Eda</creatorcontrib><creatorcontrib>Klemm, Aidan</creatorcontrib><creatorcontrib>Ali, Adam</creatorcontrib><creatorcontrib>Gai, Zheng</creatorcontrib><creatorcontrib>Unocic, Kinga A.</creatorcontrib><creatorcontrib>Kidder, Michelle K.</creatorcontrib><creatorcontrib>Gurkan, Burcu</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cagli, Eda</au><au>Klemm, Aidan</au><au>Ali, Adam</au><au>Gai, Zheng</au><au>Unocic, Kinga A.</au><au>Kidder, Michelle K.</au><au>Gurkan, Burcu</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning Surface, Phase, and Magnetization of Superparamagnetic Magnetite by Ionic Liquids: Single-Step Microwave-Assisted Synthesis</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-11</date><risdate>2024</risdate><volume>16</volume><issue>16</issue><spage>20937</spage><epage>20948</epage><pages>20937-20948</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Achieving colloidal and chemical stability in ferrofluids by surface modification requires multiple steps, including purification, ex situ modification steps, and operation at high temperatures. In this study, a single-step microwave-assisted methodology is developed for iron oxide nanoparticle (IONP) synthesis utilizing a series of imidazolium-based ionic liquids (ILs) with chloride, bis­(trifluoromethylsulfonyl)­imide, and pyrrolide anions as the reaction media, thus eliminating the use of volatile organics while enabling rapid synthesis at 80 °C as well as in situ surface functionalization. The characterized surface functionality, hydrodynamic particle size, magnetization, and colloidal stability of the IONPs demonstrate a strong dependence on the IL structure, ion coordination strength, reactivity, and hydrophilicity. The IONPs present primarily a magnetite (Fe3O4) phase with superparamagnetism with the highest saturation magnetization at 81 and 73 emu/g at 10 and 300 K, respectively. Depending on the IL coating, magnetization and exchange anisotropy decrease by 20 and 2–3 emu/g (at 35 wt % IL), respectively, but still represent the highest magnetization achieved for coated IONPs by a coprecipitation method. Further, the surface-functionalized superparamagnetic magnetite nanoparticles show good dispersibility and colloidal stability in water and dimethyl sulfoxide at 0.1 mg/mL concentration over the examined 3 month period. This study reports on the intermolecular and chemical interactions between the particle surface and the ILs under synthetic conditions as they relate to the magnetic and thermal properties of the resulting IONPs that are well suited for a variety of applications, including separation and catalysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38602421</pmid><doi>10.1021/acsami.4c02000</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4886-3350</orcidid><orcidid>https://orcid.org/0000-0002-6099-4559</orcidid><orcidid>https://orcid.org/0000-0003-0851-835X</orcidid><orcidid>https://orcid.org/000000030851835X</orcidid><orcidid>https://orcid.org/0000000260994559</orcidid><orcidid>https://orcid.org/0000000279114064</orcidid><orcidid>https://orcid.org/0000000348863350</orcidid><orcidid>https://orcid.org/0000000178194771</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-04, Vol.16 (16), p.20937-20948
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_2345313
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects ferrofluid
Functional Nanostructured Materials (including low-D carbon)
imidazolium
iron oxide
MATERIALS SCIENCE
nanoparticle synthesis
surface functionalization
title Tuning Surface, Phase, and Magnetization of Superparamagnetic Magnetite by Ionic Liquids: Single-Step Microwave-Assisted Synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20Surface,%20Phase,%20and%20Magnetization%20of%20Superparamagnetic%20Magnetite%20by%20Ionic%20Liquids:%20Single-Step%20Microwave-Assisted%20Synthesis&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Cagli,%20Eda&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-04-11&rft.volume=16&rft.issue=16&rft.spage=20937&rft.epage=20948&rft.pages=20937-20948&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c02000&rft_dat=%3Cproquest_osti_%3E3037395573%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a312t-e24d9358c7d775542529046b5ea688b124743e90b7df075aa6b24a7dd9b843393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037395573&rft_id=info:pmid/38602421&rfr_iscdi=true