Loading…
Tuning Surface, Phase, and Magnetization of Superparamagnetic Magnetite by Ionic Liquids: Single-Step Microwave-Assisted Synthesis
Achieving colloidal and chemical stability in ferrofluids by surface modification requires multiple steps, including purification, ex situ modification steps, and operation at high temperatures. In this study, a single-step microwave-assisted methodology is developed for iron oxide nanoparticle (ION...
Saved in:
Published in: | ACS applied materials & interfaces 2024-04, Vol.16 (16), p.20937-20948 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a312t-e24d9358c7d775542529046b5ea688b124743e90b7df075aa6b24a7dd9b843393 |
container_end_page | 20948 |
container_issue | 16 |
container_start_page | 20937 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Cagli, Eda Klemm, Aidan Ali, Adam Gai, Zheng Unocic, Kinga A. Kidder, Michelle K. Gurkan, Burcu |
description | Achieving colloidal and chemical stability in ferrofluids by surface modification requires multiple steps, including purification, ex situ modification steps, and operation at high temperatures. In this study, a single-step microwave-assisted methodology is developed for iron oxide nanoparticle (IONP) synthesis utilizing a series of imidazolium-based ionic liquids (ILs) with chloride, bis(trifluoromethylsulfonyl)imide, and pyrrolide anions as the reaction media, thus eliminating the use of volatile organics while enabling rapid synthesis at 80 °C as well as in situ surface functionalization. The characterized surface functionality, hydrodynamic particle size, magnetization, and colloidal stability of the IONPs demonstrate a strong dependence on the IL structure, ion coordination strength, reactivity, and hydrophilicity. The IONPs present primarily a magnetite (Fe3O4) phase with superparamagnetism with the highest saturation magnetization at 81 and 73 emu/g at 10 and 300 K, respectively. Depending on the IL coating, magnetization and exchange anisotropy decrease by 20 and 2–3 emu/g (at 35 wt % IL), respectively, but still represent the highest magnetization achieved for coated IONPs by a coprecipitation method. Further, the surface-functionalized superparamagnetic magnetite nanoparticles show good dispersibility and colloidal stability in water and dimethyl sulfoxide at 0.1 mg/mL concentration over the examined 3 month period. This study reports on the intermolecular and chemical interactions between the particle surface and the ILs under synthetic conditions as they relate to the magnetic and thermal properties of the resulting IONPs that are well suited for a variety of applications, including separation and catalysis. |
doi_str_mv | 10.1021/acsami.4c02000 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2345313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037395573</sourcerecordid><originalsourceid>FETCH-LOGICAL-a312t-e24d9358c7d775542529046b5ea688b124743e90b7df075aa6b24a7dd9b843393</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS1ERUvhyhFZnBAiiz_jhFtV8VFpq1bacrYce9J1tbHT2AEtR_5yXGXbW09jj3_zNM8PoXeUrChh9IuxyQx-JSxhhJAX6IS2QlQNk-zl01mIY_Q6pTtCas6IfIWOeVMTJhg9Qf9u5uDDLd7MU28sfMbXW5NKMcHhS3MbIPu_JvsYcOwLNMI0mskMy4t9RDLgbo8vYiittb-fvUtf8abo7qDaZBjxpbdT_GN-Q3WWkk8ZHN7sQ95CubxBR73ZJXh7qKfo1_dvN-c_q_XVj4vzs3VlOGW5AiZcy2VjlVNKSlEstkTUnQRTN01HmVCCQ0s65XqipDF1x4RRzrVdIzhv-Sn6sOjGlL1OtmxttzaGADZrxoXklBfo4wKNU7yfIWU9-GRhtzMB4pw0J1zxVkr1gK4WtFhLaYJej5MfzLTXlOiHcPQSjj6EUwbeH7TnbgD3hD-mUYBPC1AG9V2cp1D-4zm1_yU1mX8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037395573</pqid></control><display><type>article</type><title>Tuning Surface, Phase, and Magnetization of Superparamagnetic Magnetite by Ionic Liquids: Single-Step Microwave-Assisted Synthesis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Cagli, Eda ; Klemm, Aidan ; Ali, Adam ; Gai, Zheng ; Unocic, Kinga A. ; Kidder, Michelle K. ; Gurkan, Burcu</creator><creatorcontrib>Cagli, Eda ; Klemm, Aidan ; Ali, Adam ; Gai, Zheng ; Unocic, Kinga A. ; Kidder, Michelle K. ; Gurkan, Burcu ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Achieving colloidal and chemical stability in ferrofluids by surface modification requires multiple steps, including purification, ex situ modification steps, and operation at high temperatures. In this study, a single-step microwave-assisted methodology is developed for iron oxide nanoparticle (IONP) synthesis utilizing a series of imidazolium-based ionic liquids (ILs) with chloride, bis(trifluoromethylsulfonyl)imide, and pyrrolide anions as the reaction media, thus eliminating the use of volatile organics while enabling rapid synthesis at 80 °C as well as in situ surface functionalization. The characterized surface functionality, hydrodynamic particle size, magnetization, and colloidal stability of the IONPs demonstrate a strong dependence on the IL structure, ion coordination strength, reactivity, and hydrophilicity. The IONPs present primarily a magnetite (Fe3O4) phase with superparamagnetism with the highest saturation magnetization at 81 and 73 emu/g at 10 and 300 K, respectively. Depending on the IL coating, magnetization and exchange anisotropy decrease by 20 and 2–3 emu/g (at 35 wt % IL), respectively, but still represent the highest magnetization achieved for coated IONPs by a coprecipitation method. Further, the surface-functionalized superparamagnetic magnetite nanoparticles show good dispersibility and colloidal stability in water and dimethyl sulfoxide at 0.1 mg/mL concentration over the examined 3 month period. This study reports on the intermolecular and chemical interactions between the particle surface and the ILs under synthetic conditions as they relate to the magnetic and thermal properties of the resulting IONPs that are well suited for a variety of applications, including separation and catalysis.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c02000</identifier><identifier>PMID: 38602421</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ferrofluid ; Functional Nanostructured Materials (including low-D carbon) ; imidazolium ; iron oxide ; MATERIALS SCIENCE ; nanoparticle synthesis ; surface functionalization</subject><ispartof>ACS applied materials & interfaces, 2024-04, Vol.16 (16), p.20937-20948</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a312t-e24d9358c7d775542529046b5ea688b124743e90b7df075aa6b24a7dd9b843393</cites><orcidid>0000-0003-4886-3350 ; 0000-0002-6099-4559 ; 0000-0003-0851-835X ; 000000030851835X ; 0000000260994559 ; 0000000279114064 ; 0000000348863350 ; 0000000178194771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38602421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2345313$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cagli, Eda</creatorcontrib><creatorcontrib>Klemm, Aidan</creatorcontrib><creatorcontrib>Ali, Adam</creatorcontrib><creatorcontrib>Gai, Zheng</creatorcontrib><creatorcontrib>Unocic, Kinga A.</creatorcontrib><creatorcontrib>Kidder, Michelle K.</creatorcontrib><creatorcontrib>Gurkan, Burcu</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Tuning Surface, Phase, and Magnetization of Superparamagnetic Magnetite by Ionic Liquids: Single-Step Microwave-Assisted Synthesis</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Achieving colloidal and chemical stability in ferrofluids by surface modification requires multiple steps, including purification, ex situ modification steps, and operation at high temperatures. In this study, a single-step microwave-assisted methodology is developed for iron oxide nanoparticle (IONP) synthesis utilizing a series of imidazolium-based ionic liquids (ILs) with chloride, bis(trifluoromethylsulfonyl)imide, and pyrrolide anions as the reaction media, thus eliminating the use of volatile organics while enabling rapid synthesis at 80 °C as well as in situ surface functionalization. The characterized surface functionality, hydrodynamic particle size, magnetization, and colloidal stability of the IONPs demonstrate a strong dependence on the IL structure, ion coordination strength, reactivity, and hydrophilicity. The IONPs present primarily a magnetite (Fe3O4) phase with superparamagnetism with the highest saturation magnetization at 81 and 73 emu/g at 10 and 300 K, respectively. Depending on the IL coating, magnetization and exchange anisotropy decrease by 20 and 2–3 emu/g (at 35 wt % IL), respectively, but still represent the highest magnetization achieved for coated IONPs by a coprecipitation method. Further, the surface-functionalized superparamagnetic magnetite nanoparticles show good dispersibility and colloidal stability in water and dimethyl sulfoxide at 0.1 mg/mL concentration over the examined 3 month period. This study reports on the intermolecular and chemical interactions between the particle surface and the ILs under synthetic conditions as they relate to the magnetic and thermal properties of the resulting IONPs that are well suited for a variety of applications, including separation and catalysis.</description><subject>ferrofluid</subject><subject>Functional Nanostructured Materials (including low-D carbon)</subject><subject>imidazolium</subject><subject>iron oxide</subject><subject>MATERIALS SCIENCE</subject><subject>nanoparticle synthesis</subject><subject>surface functionalization</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kc1v1DAQxS1ERUvhyhFZnBAiiz_jhFtV8VFpq1bacrYce9J1tbHT2AEtR_5yXGXbW09jj3_zNM8PoXeUrChh9IuxyQx-JSxhhJAX6IS2QlQNk-zl01mIY_Q6pTtCas6IfIWOeVMTJhg9Qf9u5uDDLd7MU28sfMbXW5NKMcHhS3MbIPu_JvsYcOwLNMI0mskMy4t9RDLgbo8vYiittb-fvUtf8abo7qDaZBjxpbdT_GN-Q3WWkk8ZHN7sQ95CubxBR73ZJXh7qKfo1_dvN-c_q_XVj4vzs3VlOGW5AiZcy2VjlVNKSlEstkTUnQRTN01HmVCCQ0s65XqipDF1x4RRzrVdIzhv-Sn6sOjGlL1OtmxttzaGADZrxoXklBfo4wKNU7yfIWU9-GRhtzMB4pw0J1zxVkr1gK4WtFhLaYJej5MfzLTXlOiHcPQSjj6EUwbeH7TnbgD3hD-mUYBPC1AG9V2cp1D-4zm1_yU1mX8</recordid><startdate>20240411</startdate><enddate>20240411</enddate><creator>Cagli, Eda</creator><creator>Klemm, Aidan</creator><creator>Ali, Adam</creator><creator>Gai, Zheng</creator><creator>Unocic, Kinga A.</creator><creator>Kidder, Michelle K.</creator><creator>Gurkan, Burcu</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4886-3350</orcidid><orcidid>https://orcid.org/0000-0002-6099-4559</orcidid><orcidid>https://orcid.org/0000-0003-0851-835X</orcidid><orcidid>https://orcid.org/000000030851835X</orcidid><orcidid>https://orcid.org/0000000260994559</orcidid><orcidid>https://orcid.org/0000000279114064</orcidid><orcidid>https://orcid.org/0000000348863350</orcidid><orcidid>https://orcid.org/0000000178194771</orcidid></search><sort><creationdate>20240411</creationdate><title>Tuning Surface, Phase, and Magnetization of Superparamagnetic Magnetite by Ionic Liquids: Single-Step Microwave-Assisted Synthesis</title><author>Cagli, Eda ; Klemm, Aidan ; Ali, Adam ; Gai, Zheng ; Unocic, Kinga A. ; Kidder, Michelle K. ; Gurkan, Burcu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a312t-e24d9358c7d775542529046b5ea688b124743e90b7df075aa6b24a7dd9b843393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ferrofluid</topic><topic>Functional Nanostructured Materials (including low-D carbon)</topic><topic>imidazolium</topic><topic>iron oxide</topic><topic>MATERIALS SCIENCE</topic><topic>nanoparticle synthesis</topic><topic>surface functionalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cagli, Eda</creatorcontrib><creatorcontrib>Klemm, Aidan</creatorcontrib><creatorcontrib>Ali, Adam</creatorcontrib><creatorcontrib>Gai, Zheng</creatorcontrib><creatorcontrib>Unocic, Kinga A.</creatorcontrib><creatorcontrib>Kidder, Michelle K.</creatorcontrib><creatorcontrib>Gurkan, Burcu</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cagli, Eda</au><au>Klemm, Aidan</au><au>Ali, Adam</au><au>Gai, Zheng</au><au>Unocic, Kinga A.</au><au>Kidder, Michelle K.</au><au>Gurkan, Burcu</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning Surface, Phase, and Magnetization of Superparamagnetic Magnetite by Ionic Liquids: Single-Step Microwave-Assisted Synthesis</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-11</date><risdate>2024</risdate><volume>16</volume><issue>16</issue><spage>20937</spage><epage>20948</epage><pages>20937-20948</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Achieving colloidal and chemical stability in ferrofluids by surface modification requires multiple steps, including purification, ex situ modification steps, and operation at high temperatures. In this study, a single-step microwave-assisted methodology is developed for iron oxide nanoparticle (IONP) synthesis utilizing a series of imidazolium-based ionic liquids (ILs) with chloride, bis(trifluoromethylsulfonyl)imide, and pyrrolide anions as the reaction media, thus eliminating the use of volatile organics while enabling rapid synthesis at 80 °C as well as in situ surface functionalization. The characterized surface functionality, hydrodynamic particle size, magnetization, and colloidal stability of the IONPs demonstrate a strong dependence on the IL structure, ion coordination strength, reactivity, and hydrophilicity. The IONPs present primarily a magnetite (Fe3O4) phase with superparamagnetism with the highest saturation magnetization at 81 and 73 emu/g at 10 and 300 K, respectively. Depending on the IL coating, magnetization and exchange anisotropy decrease by 20 and 2–3 emu/g (at 35 wt % IL), respectively, but still represent the highest magnetization achieved for coated IONPs by a coprecipitation method. Further, the surface-functionalized superparamagnetic magnetite nanoparticles show good dispersibility and colloidal stability in water and dimethyl sulfoxide at 0.1 mg/mL concentration over the examined 3 month period. This study reports on the intermolecular and chemical interactions between the particle surface and the ILs under synthetic conditions as they relate to the magnetic and thermal properties of the resulting IONPs that are well suited for a variety of applications, including separation and catalysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38602421</pmid><doi>10.1021/acsami.4c02000</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4886-3350</orcidid><orcidid>https://orcid.org/0000-0002-6099-4559</orcidid><orcidid>https://orcid.org/0000-0003-0851-835X</orcidid><orcidid>https://orcid.org/000000030851835X</orcidid><orcidid>https://orcid.org/0000000260994559</orcidid><orcidid>https://orcid.org/0000000279114064</orcidid><orcidid>https://orcid.org/0000000348863350</orcidid><orcidid>https://orcid.org/0000000178194771</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-04, Vol.16 (16), p.20937-20948 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_osti_scitechconnect_2345313 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | ferrofluid Functional Nanostructured Materials (including low-D carbon) imidazolium iron oxide MATERIALS SCIENCE nanoparticle synthesis surface functionalization |
title | Tuning Surface, Phase, and Magnetization of Superparamagnetic Magnetite by Ionic Liquids: Single-Step Microwave-Assisted Synthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20Surface,%20Phase,%20and%20Magnetization%20of%20Superparamagnetic%20Magnetite%20by%20Ionic%20Liquids:%20Single-Step%20Microwave-Assisted%20Synthesis&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Cagli,%20Eda&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-04-11&rft.volume=16&rft.issue=16&rft.spage=20937&rft.epage=20948&rft.pages=20937-20948&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c02000&rft_dat=%3Cproquest_osti_%3E3037395573%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a312t-e24d9358c7d775542529046b5ea688b124743e90b7df075aa6b24a7dd9b843393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037395573&rft_id=info:pmid/38602421&rfr_iscdi=true |