Loading…
Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning
Star block copolymers (s-BCPs) have potential applications as novel surfactants or amphiphiles for emulsification, compatibilization, chemical transformations, and separations. s-BCPs have chain architectures where three or more linear diblock copolymer arms comprised of two chemically distinct line...
Saved in:
Published in: | The journal of physical chemistry. B 2024-05, Vol.128 (17), p.4220-4230 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a316t-650724531ea5c4e1ac30a6317a32977b83359b847f02d1a2fbf02fc13a3813f33 |
container_end_page | 4230 |
container_issue | 17 |
container_start_page | 4220 |
container_title | The journal of physical chemistry. B |
container_volume | 128 |
creator | Carrillo, Jan-Michael Y. Parambil, Vijith Patra, Tarak K. Chen, Zhan Russell, Thomas P. Sankaranarayanan, Subramanian K. R. S. Sumpter, Bobby G. Batra, Rohit |
description | Star block copolymers (s-BCPs) have potential applications as novel surfactants or amphiphiles for emulsification, compatibilization, chemical transformations, and separations. s-BCPs have chain architectures where three or more linear diblock copolymer arms comprised of two chemically distinct linear polymers, e.g., solvophobic and solvophilic chains, are covalently joined at one point. The chemical composition of each of the subunit polymer chains comprising the arms, their molecular weights, and the number of arms can be varied to tailor the surface and interfacial activity of these architecturally unique molecules. This makes identification of the optimal s-BCP design nontrivial as the total number of plausible s-BCP architectures is experimentally or computationally intractable. In this work, we use molecular dynamics (MD) simulations coupled with a reinforcement learning-based Monte Carlo tree search (MCTS) to identify s-BCP designs that minimize the interfacial tension between polar and nonpolar solvents. We first validate the MCTS approach for the design of small- and medium-sized s-BCPs and then use it to efficiently identify sequences of copolymer blocks for large-sized s-BCPs. The structural origins of interfacial tension in these systems are also identified by using the configurations obtained from MD simulations. Chemical insights into the arrangement of copolymer blocks that promote lower interfacial tension were mined using machine learning (ML) techniques. Overall, this work provides an efficient approach to solve design problems via fusion of simulations and ML and provides important groundwork for future experimental investigation of s-BCPs for various applications. |
doi_str_mv | 10.1021/acs.jpcb.3c08110 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2345342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3045115171</sourcerecordid><originalsourceid>FETCH-LOGICAL-a316t-650724531ea5c4e1ac30a6317a32977b83359b847f02d1a2fbf02fc13a3813f33</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhlcIREvhzglZnDiQ4LH3q9xC2gJSKg6hZ2t2Mpu67NqLvYvIP-Hn4iWBGwfLo9HzPod5s-wlyCVIBe-Q4vJhoGapSdYA8lF2DoWSi_Sqx6e5BFmeZc9ifJBSFaoun2Znui7zWpfVefZrRcQdBxx5J7b8fWJHLK442r0TvhXbEYP40Hn6JtZ-8N2h5xDfi5UTd66xGFPq-ufQ-SSw3iV8Nu0P4odFcTPFeZcst75jmrqkujo47C1FsbV9WsyhKNDtxC3SvXUsNozBWbd_nj1psYv84vRfZHc311_XnxabLx8_r1ebBWoox0VZyErlhQbGgnIGJC2x1FChVpdV1dRaF5dNnVetVDtA1TZpaAk06hp0q_VF9vro9XG0JpIdme7JO8c0GqWTOlcJenOEhuDTieJoehvT3Tp07KdotMwLgAIqSKg8ohR8jIFbMwTbYzgYkGYuzaTSzFyaOZWWIq9O9qnpefcv8LelBLw9An-ifgouXeT_vt9OUqOc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3045115171</pqid></control><display><type>article</type><title>Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Carrillo, Jan-Michael Y. ; Parambil, Vijith ; Patra, Tarak K. ; Chen, Zhan ; Russell, Thomas P. ; Sankaranarayanan, Subramanian K. R. S. ; Sumpter, Bobby G. ; Batra, Rohit</creator><creatorcontrib>Carrillo, Jan-Michael Y. ; Parambil, Vijith ; Patra, Tarak K. ; Chen, Zhan ; Russell, Thomas P. ; Sankaranarayanan, Subramanian K. R. S. ; Sumpter, Bobby G. ; Batra, Rohit ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Star block copolymers (s-BCPs) have potential applications as novel surfactants or amphiphiles for emulsification, compatibilization, chemical transformations, and separations. s-BCPs have chain architectures where three or more linear diblock copolymer arms comprised of two chemically distinct linear polymers, e.g., solvophobic and solvophilic chains, are covalently joined at one point. The chemical composition of each of the subunit polymer chains comprising the arms, their molecular weights, and the number of arms can be varied to tailor the surface and interfacial activity of these architecturally unique molecules. This makes identification of the optimal s-BCP design nontrivial as the total number of plausible s-BCP architectures is experimentally or computationally intractable. In this work, we use molecular dynamics (MD) simulations coupled with a reinforcement learning-based Monte Carlo tree search (MCTS) to identify s-BCP designs that minimize the interfacial tension between polar and nonpolar solvents. We first validate the MCTS approach for the design of small- and medium-sized s-BCPs and then use it to efficiently identify sequences of copolymer blocks for large-sized s-BCPs. The structural origins of interfacial tension in these systems are also identified by using the configurations obtained from MD simulations. Chemical insights into the arrangement of copolymer blocks that promote lower interfacial tension were mined using machine learning (ML) techniques. Overall, this work provides an efficient approach to solve design problems via fusion of simulations and ML and provides important groundwork for future experimental investigation of s-BCPs for various applications.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.3c08110</identifier><identifier>PMID: 38648367</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials ; Copolymers ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Interfaces ; Solvents ; Star polymers ; Surface tension</subject><ispartof>The journal of physical chemistry. B, 2024-05, Vol.128 (17), p.4220-4230</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a316t-650724531ea5c4e1ac30a6317a32977b83359b847f02d1a2fbf02fc13a3813f33</cites><orcidid>0000-0002-6002-0922 ; 0000-0001-6341-0355 ; 0000-0001-8774-697X ; 0000-0002-1098-7035 ; 0000-0002-9708-396X ; 000000029708396X ; 000000018774697X ; 0000000163410355 ; 0000000260020922 ; 0000000210987035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38648367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2345342$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrillo, Jan-Michael Y.</creatorcontrib><creatorcontrib>Parambil, Vijith</creatorcontrib><creatorcontrib>Patra, Tarak K.</creatorcontrib><creatorcontrib>Chen, Zhan</creatorcontrib><creatorcontrib>Russell, Thomas P.</creatorcontrib><creatorcontrib>Sankaranarayanan, Subramanian K. R. S.</creatorcontrib><creatorcontrib>Sumpter, Bobby G.</creatorcontrib><creatorcontrib>Batra, Rohit</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Star block copolymers (s-BCPs) have potential applications as novel surfactants or amphiphiles for emulsification, compatibilization, chemical transformations, and separations. s-BCPs have chain architectures where three or more linear diblock copolymer arms comprised of two chemically distinct linear polymers, e.g., solvophobic and solvophilic chains, are covalently joined at one point. The chemical composition of each of the subunit polymer chains comprising the arms, their molecular weights, and the number of arms can be varied to tailor the surface and interfacial activity of these architecturally unique molecules. This makes identification of the optimal s-BCP design nontrivial as the total number of plausible s-BCP architectures is experimentally or computationally intractable. In this work, we use molecular dynamics (MD) simulations coupled with a reinforcement learning-based Monte Carlo tree search (MCTS) to identify s-BCP designs that minimize the interfacial tension between polar and nonpolar solvents. We first validate the MCTS approach for the design of small- and medium-sized s-BCPs and then use it to efficiently identify sequences of copolymer blocks for large-sized s-BCPs. The structural origins of interfacial tension in these systems are also identified by using the configurations obtained from MD simulations. Chemical insights into the arrangement of copolymer blocks that promote lower interfacial tension were mined using machine learning (ML) techniques. Overall, this work provides an efficient approach to solve design problems via fusion of simulations and ML and provides important groundwork for future experimental investigation of s-BCPs for various applications.</description><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</subject><subject>Copolymers</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Interfaces</subject><subject>Solvents</subject><subject>Star polymers</subject><subject>Surface tension</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1vEzEQhlcIREvhzglZnDiQ4LH3q9xC2gJSKg6hZ2t2Mpu67NqLvYvIP-Hn4iWBGwfLo9HzPod5s-wlyCVIBe-Q4vJhoGapSdYA8lF2DoWSi_Sqx6e5BFmeZc9ifJBSFaoun2Znui7zWpfVefZrRcQdBxx5J7b8fWJHLK442r0TvhXbEYP40Hn6JtZ-8N2h5xDfi5UTd66xGFPq-ufQ-SSw3iV8Nu0P4odFcTPFeZcst75jmrqkujo47C1FsbV9WsyhKNDtxC3SvXUsNozBWbd_nj1psYv84vRfZHc311_XnxabLx8_r1ebBWoox0VZyErlhQbGgnIGJC2x1FChVpdV1dRaF5dNnVetVDtA1TZpaAk06hp0q_VF9vro9XG0JpIdme7JO8c0GqWTOlcJenOEhuDTieJoehvT3Tp07KdotMwLgAIqSKg8ohR8jIFbMwTbYzgYkGYuzaTSzFyaOZWWIq9O9qnpefcv8LelBLw9An-ifgouXeT_vt9OUqOc</recordid><startdate>20240502</startdate><enddate>20240502</enddate><creator>Carrillo, Jan-Michael Y.</creator><creator>Parambil, Vijith</creator><creator>Patra, Tarak K.</creator><creator>Chen, Zhan</creator><creator>Russell, Thomas P.</creator><creator>Sankaranarayanan, Subramanian K. R. S.</creator><creator>Sumpter, Bobby G.</creator><creator>Batra, Rohit</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6002-0922</orcidid><orcidid>https://orcid.org/0000-0001-6341-0355</orcidid><orcidid>https://orcid.org/0000-0001-8774-697X</orcidid><orcidid>https://orcid.org/0000-0002-1098-7035</orcidid><orcidid>https://orcid.org/0000-0002-9708-396X</orcidid><orcidid>https://orcid.org/000000029708396X</orcidid><orcidid>https://orcid.org/000000018774697X</orcidid><orcidid>https://orcid.org/0000000163410355</orcidid><orcidid>https://orcid.org/0000000260020922</orcidid><orcidid>https://orcid.org/0000000210987035</orcidid></search><sort><creationdate>20240502</creationdate><title>Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning</title><author>Carrillo, Jan-Michael Y. ; Parambil, Vijith ; Patra, Tarak K. ; Chen, Zhan ; Russell, Thomas P. ; Sankaranarayanan, Subramanian K. R. S. ; Sumpter, Bobby G. ; Batra, Rohit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a316t-650724531ea5c4e1ac30a6317a32977b83359b847f02d1a2fbf02fc13a3813f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</topic><topic>Copolymers</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Interfaces</topic><topic>Solvents</topic><topic>Star polymers</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrillo, Jan-Michael Y.</creatorcontrib><creatorcontrib>Parambil, Vijith</creatorcontrib><creatorcontrib>Patra, Tarak K.</creatorcontrib><creatorcontrib>Chen, Zhan</creatorcontrib><creatorcontrib>Russell, Thomas P.</creatorcontrib><creatorcontrib>Sankaranarayanan, Subramanian K. R. S.</creatorcontrib><creatorcontrib>Sumpter, Bobby G.</creatorcontrib><creatorcontrib>Batra, Rohit</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrillo, Jan-Michael Y.</au><au>Parambil, Vijith</au><au>Patra, Tarak K.</au><au>Chen, Zhan</au><au>Russell, Thomas P.</au><au>Sankaranarayanan, Subramanian K. R. S.</au><au>Sumpter, Bobby G.</au><au>Batra, Rohit</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2024-05-02</date><risdate>2024</risdate><volume>128</volume><issue>17</issue><spage>4220</spage><epage>4230</epage><pages>4220-4230</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Star block copolymers (s-BCPs) have potential applications as novel surfactants or amphiphiles for emulsification, compatibilization, chemical transformations, and separations. s-BCPs have chain architectures where three or more linear diblock copolymer arms comprised of two chemically distinct linear polymers, e.g., solvophobic and solvophilic chains, are covalently joined at one point. The chemical composition of each of the subunit polymer chains comprising the arms, their molecular weights, and the number of arms can be varied to tailor the surface and interfacial activity of these architecturally unique molecules. This makes identification of the optimal s-BCP design nontrivial as the total number of plausible s-BCP architectures is experimentally or computationally intractable. In this work, we use molecular dynamics (MD) simulations coupled with a reinforcement learning-based Monte Carlo tree search (MCTS) to identify s-BCP designs that minimize the interfacial tension between polar and nonpolar solvents. We first validate the MCTS approach for the design of small- and medium-sized s-BCPs and then use it to efficiently identify sequences of copolymer blocks for large-sized s-BCPs. The structural origins of interfacial tension in these systems are also identified by using the configurations obtained from MD simulations. Chemical insights into the arrangement of copolymer blocks that promote lower interfacial tension were mined using machine learning (ML) techniques. Overall, this work provides an efficient approach to solve design problems via fusion of simulations and ML and provides important groundwork for future experimental investigation of s-BCPs for various applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38648367</pmid><doi>10.1021/acs.jpcb.3c08110</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6002-0922</orcidid><orcidid>https://orcid.org/0000-0001-6341-0355</orcidid><orcidid>https://orcid.org/0000-0001-8774-697X</orcidid><orcidid>https://orcid.org/0000-0002-1098-7035</orcidid><orcidid>https://orcid.org/0000-0002-9708-396X</orcidid><orcidid>https://orcid.org/000000029708396X</orcidid><orcidid>https://orcid.org/000000018774697X</orcidid><orcidid>https://orcid.org/0000000163410355</orcidid><orcidid>https://orcid.org/0000000260020922</orcidid><orcidid>https://orcid.org/0000000210987035</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2024-05, Vol.128 (17), p.4220-4230 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_osti_scitechconnect_2345342 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials Copolymers INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Interfaces Solvents Star polymers Surface tension |
title | Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Sequence%20Design%20of%20Star%20Block%20Copolymers:%20An%20Unbiased%20Exploration%20Strategy%20via%20Fusion%20of%20Molecular%20Dynamics%20Simulations%20and%20Machine%20Learning&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Carrillo,%20Jan-Michael%20Y.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2024-05-02&rft.volume=128&rft.issue=17&rft.spage=4220&rft.epage=4230&rft.pages=4220-4230&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.3c08110&rft_dat=%3Cproquest_osti_%3E3045115171%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a316t-650724531ea5c4e1ac30a6317a32977b83359b847f02d1a2fbf02fc13a3813f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3045115171&rft_id=info:pmid/38648367&rfr_iscdi=true |