Loading…

Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning

Star block copolymers (s-BCPs) have potential applications as novel surfactants or amphiphiles for emulsification, compatibilization, chemical transformations, and separations. s-BCPs have chain architectures where three or more linear diblock copolymer arms comprised of two chemically distinct line...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2024-05, Vol.128 (17), p.4220-4230
Main Authors: Carrillo, Jan-Michael Y., Parambil, Vijith, Patra, Tarak K., Chen, Zhan, Russell, Thomas P., Sankaranarayanan, Subramanian K. R. S., Sumpter, Bobby G., Batra, Rohit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a316t-650724531ea5c4e1ac30a6317a32977b83359b847f02d1a2fbf02fc13a3813f33
container_end_page 4230
container_issue 17
container_start_page 4220
container_title The journal of physical chemistry. B
container_volume 128
creator Carrillo, Jan-Michael Y.
Parambil, Vijith
Patra, Tarak K.
Chen, Zhan
Russell, Thomas P.
Sankaranarayanan, Subramanian K. R. S.
Sumpter, Bobby G.
Batra, Rohit
description Star block copolymers (s-BCPs) have potential applications as novel surfactants or amphiphiles for emulsification, compatibilization, chemical transformations, and separations. s-BCPs have chain architectures where three or more linear diblock copolymer arms comprised of two chemically distinct linear polymers, e.g., solvophobic and solvophilic chains, are covalently joined at one point. The chemical composition of each of the subunit polymer chains comprising the arms, their molecular weights, and the number of arms can be varied to tailor the surface and interfacial activity of these architecturally unique molecules. This makes identification of the optimal s-BCP design nontrivial as the total number of plausible s-BCP architectures is experimentally or computationally intractable. In this work, we use molecular dynamics (MD) simulations coupled with a reinforcement learning-based Monte Carlo tree search (MCTS) to identify s-BCP designs that minimize the interfacial tension between polar and nonpolar solvents. We first validate the MCTS approach for the design of small- and medium-sized s-BCPs and then use it to efficiently identify sequences of copolymer blocks for large-sized s-BCPs. The structural origins of interfacial tension in these systems are also identified by using the configurations obtained from MD simulations. Chemical insights into the arrangement of copolymer blocks that promote lower interfacial tension were mined using machine learning (ML) techniques. Overall, this work provides an efficient approach to solve design problems via fusion of simulations and ML and provides important groundwork for future experimental investigation of s-BCPs for various applications.
doi_str_mv 10.1021/acs.jpcb.3c08110
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2345342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3045115171</sourcerecordid><originalsourceid>FETCH-LOGICAL-a316t-650724531ea5c4e1ac30a6317a32977b83359b847f02d1a2fbf02fc13a3813f33</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhlcIREvhzglZnDiQ4LH3q9xC2gJSKg6hZ2t2Mpu67NqLvYvIP-Hn4iWBGwfLo9HzPod5s-wlyCVIBe-Q4vJhoGapSdYA8lF2DoWSi_Sqx6e5BFmeZc9ifJBSFaoun2Znui7zWpfVefZrRcQdBxx5J7b8fWJHLK442r0TvhXbEYP40Hn6JtZ-8N2h5xDfi5UTd66xGFPq-ufQ-SSw3iV8Nu0P4odFcTPFeZcst75jmrqkujo47C1FsbV9WsyhKNDtxC3SvXUsNozBWbd_nj1psYv84vRfZHc311_XnxabLx8_r1ebBWoox0VZyErlhQbGgnIGJC2x1FChVpdV1dRaF5dNnVetVDtA1TZpaAk06hp0q_VF9vro9XG0JpIdme7JO8c0GqWTOlcJenOEhuDTieJoehvT3Tp07KdotMwLgAIqSKg8ohR8jIFbMwTbYzgYkGYuzaTSzFyaOZWWIq9O9qnpefcv8LelBLw9An-ifgouXeT_vt9OUqOc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3045115171</pqid></control><display><type>article</type><title>Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Carrillo, Jan-Michael Y. ; Parambil, Vijith ; Patra, Tarak K. ; Chen, Zhan ; Russell, Thomas P. ; Sankaranarayanan, Subramanian K. R. S. ; Sumpter, Bobby G. ; Batra, Rohit</creator><creatorcontrib>Carrillo, Jan-Michael Y. ; Parambil, Vijith ; Patra, Tarak K. ; Chen, Zhan ; Russell, Thomas P. ; Sankaranarayanan, Subramanian K. R. S. ; Sumpter, Bobby G. ; Batra, Rohit ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Star block copolymers (s-BCPs) have potential applications as novel surfactants or amphiphiles for emulsification, compatibilization, chemical transformations, and separations. s-BCPs have chain architectures where three or more linear diblock copolymer arms comprised of two chemically distinct linear polymers, e.g., solvophobic and solvophilic chains, are covalently joined at one point. The chemical composition of each of the subunit polymer chains comprising the arms, their molecular weights, and the number of arms can be varied to tailor the surface and interfacial activity of these architecturally unique molecules. This makes identification of the optimal s-BCP design nontrivial as the total number of plausible s-BCP architectures is experimentally or computationally intractable. In this work, we use molecular dynamics (MD) simulations coupled with a reinforcement learning-based Monte Carlo tree search (MCTS) to identify s-BCP designs that minimize the interfacial tension between polar and nonpolar solvents. We first validate the MCTS approach for the design of small- and medium-sized s-BCPs and then use it to efficiently identify sequences of copolymer blocks for large-sized s-BCPs. The structural origins of interfacial tension in these systems are also identified by using the configurations obtained from MD simulations. Chemical insights into the arrangement of copolymer blocks that promote lower interfacial tension were mined using machine learning (ML) techniques. Overall, this work provides an efficient approach to solve design problems via fusion of simulations and ML and provides important groundwork for future experimental investigation of s-BCPs for various applications.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.3c08110</identifier><identifier>PMID: 38648367</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials ; Copolymers ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Interfaces ; Solvents ; Star polymers ; Surface tension</subject><ispartof>The journal of physical chemistry. B, 2024-05, Vol.128 (17), p.4220-4230</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a316t-650724531ea5c4e1ac30a6317a32977b83359b847f02d1a2fbf02fc13a3813f33</cites><orcidid>0000-0002-6002-0922 ; 0000-0001-6341-0355 ; 0000-0001-8774-697X ; 0000-0002-1098-7035 ; 0000-0002-9708-396X ; 000000029708396X ; 000000018774697X ; 0000000163410355 ; 0000000260020922 ; 0000000210987035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38648367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2345342$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrillo, Jan-Michael Y.</creatorcontrib><creatorcontrib>Parambil, Vijith</creatorcontrib><creatorcontrib>Patra, Tarak K.</creatorcontrib><creatorcontrib>Chen, Zhan</creatorcontrib><creatorcontrib>Russell, Thomas P.</creatorcontrib><creatorcontrib>Sankaranarayanan, Subramanian K. R. S.</creatorcontrib><creatorcontrib>Sumpter, Bobby G.</creatorcontrib><creatorcontrib>Batra, Rohit</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Star block copolymers (s-BCPs) have potential applications as novel surfactants or amphiphiles for emulsification, compatibilization, chemical transformations, and separations. s-BCPs have chain architectures where three or more linear diblock copolymer arms comprised of two chemically distinct linear polymers, e.g., solvophobic and solvophilic chains, are covalently joined at one point. The chemical composition of each of the subunit polymer chains comprising the arms, their molecular weights, and the number of arms can be varied to tailor the surface and interfacial activity of these architecturally unique molecules. This makes identification of the optimal s-BCP design nontrivial as the total number of plausible s-BCP architectures is experimentally or computationally intractable. In this work, we use molecular dynamics (MD) simulations coupled with a reinforcement learning-based Monte Carlo tree search (MCTS) to identify s-BCP designs that minimize the interfacial tension between polar and nonpolar solvents. We first validate the MCTS approach for the design of small- and medium-sized s-BCPs and then use it to efficiently identify sequences of copolymer blocks for large-sized s-BCPs. The structural origins of interfacial tension in these systems are also identified by using the configurations obtained from MD simulations. Chemical insights into the arrangement of copolymer blocks that promote lower interfacial tension were mined using machine learning (ML) techniques. Overall, this work provides an efficient approach to solve design problems via fusion of simulations and ML and provides important groundwork for future experimental investigation of s-BCPs for various applications.</description><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</subject><subject>Copolymers</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Interfaces</subject><subject>Solvents</subject><subject>Star polymers</subject><subject>Surface tension</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1vEzEQhlcIREvhzglZnDiQ4LH3q9xC2gJSKg6hZ2t2Mpu67NqLvYvIP-Hn4iWBGwfLo9HzPod5s-wlyCVIBe-Q4vJhoGapSdYA8lF2DoWSi_Sqx6e5BFmeZc9ifJBSFaoun2Znui7zWpfVefZrRcQdBxx5J7b8fWJHLK442r0TvhXbEYP40Hn6JtZ-8N2h5xDfi5UTd66xGFPq-ufQ-SSw3iV8Nu0P4odFcTPFeZcst75jmrqkujo47C1FsbV9WsyhKNDtxC3SvXUsNozBWbd_nj1psYv84vRfZHc311_XnxabLx8_r1ebBWoox0VZyErlhQbGgnIGJC2x1FChVpdV1dRaF5dNnVetVDtA1TZpaAk06hp0q_VF9vro9XG0JpIdme7JO8c0GqWTOlcJenOEhuDTieJoehvT3Tp07KdotMwLgAIqSKg8ohR8jIFbMwTbYzgYkGYuzaTSzFyaOZWWIq9O9qnpefcv8LelBLw9An-ifgouXeT_vt9OUqOc</recordid><startdate>20240502</startdate><enddate>20240502</enddate><creator>Carrillo, Jan-Michael Y.</creator><creator>Parambil, Vijith</creator><creator>Patra, Tarak K.</creator><creator>Chen, Zhan</creator><creator>Russell, Thomas P.</creator><creator>Sankaranarayanan, Subramanian K. R. S.</creator><creator>Sumpter, Bobby G.</creator><creator>Batra, Rohit</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6002-0922</orcidid><orcidid>https://orcid.org/0000-0001-6341-0355</orcidid><orcidid>https://orcid.org/0000-0001-8774-697X</orcidid><orcidid>https://orcid.org/0000-0002-1098-7035</orcidid><orcidid>https://orcid.org/0000-0002-9708-396X</orcidid><orcidid>https://orcid.org/000000029708396X</orcidid><orcidid>https://orcid.org/000000018774697X</orcidid><orcidid>https://orcid.org/0000000163410355</orcidid><orcidid>https://orcid.org/0000000260020922</orcidid><orcidid>https://orcid.org/0000000210987035</orcidid></search><sort><creationdate>20240502</creationdate><title>Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning</title><author>Carrillo, Jan-Michael Y. ; Parambil, Vijith ; Patra, Tarak K. ; Chen, Zhan ; Russell, Thomas P. ; Sankaranarayanan, Subramanian K. R. S. ; Sumpter, Bobby G. ; Batra, Rohit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a316t-650724531ea5c4e1ac30a6317a32977b83359b847f02d1a2fbf02fc13a3813f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</topic><topic>Copolymers</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Interfaces</topic><topic>Solvents</topic><topic>Star polymers</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrillo, Jan-Michael Y.</creatorcontrib><creatorcontrib>Parambil, Vijith</creatorcontrib><creatorcontrib>Patra, Tarak K.</creatorcontrib><creatorcontrib>Chen, Zhan</creatorcontrib><creatorcontrib>Russell, Thomas P.</creatorcontrib><creatorcontrib>Sankaranarayanan, Subramanian K. R. S.</creatorcontrib><creatorcontrib>Sumpter, Bobby G.</creatorcontrib><creatorcontrib>Batra, Rohit</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrillo, Jan-Michael Y.</au><au>Parambil, Vijith</au><au>Patra, Tarak K.</au><au>Chen, Zhan</au><au>Russell, Thomas P.</au><au>Sankaranarayanan, Subramanian K. R. S.</au><au>Sumpter, Bobby G.</au><au>Batra, Rohit</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2024-05-02</date><risdate>2024</risdate><volume>128</volume><issue>17</issue><spage>4220</spage><epage>4230</epage><pages>4220-4230</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Star block copolymers (s-BCPs) have potential applications as novel surfactants or amphiphiles for emulsification, compatibilization, chemical transformations, and separations. s-BCPs have chain architectures where three or more linear diblock copolymer arms comprised of two chemically distinct linear polymers, e.g., solvophobic and solvophilic chains, are covalently joined at one point. The chemical composition of each of the subunit polymer chains comprising the arms, their molecular weights, and the number of arms can be varied to tailor the surface and interfacial activity of these architecturally unique molecules. This makes identification of the optimal s-BCP design nontrivial as the total number of plausible s-BCP architectures is experimentally or computationally intractable. In this work, we use molecular dynamics (MD) simulations coupled with a reinforcement learning-based Monte Carlo tree search (MCTS) to identify s-BCP designs that minimize the interfacial tension between polar and nonpolar solvents. We first validate the MCTS approach for the design of small- and medium-sized s-BCPs and then use it to efficiently identify sequences of copolymer blocks for large-sized s-BCPs. The structural origins of interfacial tension in these systems are also identified by using the configurations obtained from MD simulations. Chemical insights into the arrangement of copolymer blocks that promote lower interfacial tension were mined using machine learning (ML) techniques. Overall, this work provides an efficient approach to solve design problems via fusion of simulations and ML and provides important groundwork for future experimental investigation of s-BCPs for various applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38648367</pmid><doi>10.1021/acs.jpcb.3c08110</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6002-0922</orcidid><orcidid>https://orcid.org/0000-0001-6341-0355</orcidid><orcidid>https://orcid.org/0000-0001-8774-697X</orcidid><orcidid>https://orcid.org/0000-0002-1098-7035</orcidid><orcidid>https://orcid.org/0000-0002-9708-396X</orcidid><orcidid>https://orcid.org/000000029708396X</orcidid><orcidid>https://orcid.org/000000018774697X</orcidid><orcidid>https://orcid.org/0000000163410355</orcidid><orcidid>https://orcid.org/0000000260020922</orcidid><orcidid>https://orcid.org/0000000210987035</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2024-05, Vol.128 (17), p.4220-4230
issn 1520-6106
1520-5207
language eng
recordid cdi_osti_scitechconnect_2345342
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials
Copolymers
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Interfaces
Solvents
Star polymers
Surface tension
title Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Sequence%20Design%20of%20Star%20Block%20Copolymers:%20An%20Unbiased%20Exploration%20Strategy%20via%20Fusion%20of%20Molecular%20Dynamics%20Simulations%20and%20Machine%20Learning&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Carrillo,%20Jan-Michael%20Y.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2024-05-02&rft.volume=128&rft.issue=17&rft.spage=4220&rft.epage=4230&rft.pages=4220-4230&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.3c08110&rft_dat=%3Cproquest_osti_%3E3045115171%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a316t-650724531ea5c4e1ac30a6317a32977b83359b847f02d1a2fbf02fc13a3813f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3045115171&rft_id=info:pmid/38648367&rfr_iscdi=true