Loading…

High-pressure CO2 dissociation with nanosecond pulsed discharges

Herein we investigate the conversion of CO2 into CO and O2 with nanosecond repetitively pulsed (NRP) discharges in a high-pressure batch reactor. Stable discharges are obtained at up to 12 bar. By-products are measured with gas chromatography. The energy efficiency is determined for a range of proce...

Full description

Saved in:
Bibliographic Details
Published in:Plasma sources science & technology 2023-11, Vol.32 (11)
Main Authors: Yong, Taemin, Zhong, Hongtao, Pannier, Erwan, Laux, Christophe, Cappelli, Mark A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 11
container_start_page
container_title Plasma sources science & technology
container_volume 32
creator Yong, Taemin
Zhong, Hongtao
Pannier, Erwan
Laux, Christophe
Cappelli, Mark A
description Herein we investigate the conversion of CO2 into CO and O2 with nanosecond repetitively pulsed (NRP) discharges in a high-pressure batch reactor. Stable discharges are obtained at up to 12 bar. By-products are measured with gas chromatography. The energy efficiency is determined for a range of processing times, pulse energy, and fill pressures. It is only weakly sensitive to the plasma operating parameters, i.e the extent of CO2 conversion is almost linearly-dependent on the specific energy invested. A conversion rate as high as 14% is achieved with an energy efficiency of 23%. For long processing times, saturation in the yield and a drop in efficiency are observed, due to the increasing role of three-body recombination reactions, as described by zero-dimensional detailed kinetic modeling. The modeling reveals the presence of three-stage kinetics between NRP pulses, controlled by electron-impact CO2 dissociation, vibrational relaxation, and neutral elementary kinetics. Transport effects are shown to be important for CO2 conversion at high pressures. For fill pressures beyond 10 bar, CO2 may locally transit into supercritical states. The supercritical plasma kinetics may bypass atomic oxygen pathways and directly convert CO2 into O2. This work provides a detailed analysis of plasma-based high-pressure CO2 conversion, which is of great relevance to future large-scale sustainable carbon capture, utilization, and storage.
doi_str_mv 10.1088/1361-6595/ad066e
format article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2369208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psstad066e</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-9c54b0993c4a377c9de1e7815d76472bd1dbe4bff245b024ce40138cae8e53d13</originalsourceid><addsrcrecordid>eNo9kE1LxDAURYMoWEf3Lotr6-Tlq8lOGdQRBmaj65Amr9MM0pSmg3_flhFXFy6Hy-UQcg_0CajWa-AKKiWNXLtAlcILUvxXl6SgRvGKMsmuyU3OR0oBNKsL8ryNh64aRsz5NGK52bMyxJyTj26KqS9_4tSVvetTRp_6UA6n74xhYXznxgPmW3LVurm7-8sV-Xp7_dxsq93-_WPzsqsiAzNVxkvRUGO4F47XtTcBAWsNMtRK1KwJEBoUTdsyIRvKhEdBgWvvUKPkAfiKPJx3U56izT5O6Lv5Uo9-sowrw6ieocczFNNgj-k09vMlC9Quiuziwy4-7FkR_wVxh1mQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-pressure CO2 dissociation with nanosecond pulsed discharges</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Yong, Taemin ; Zhong, Hongtao ; Pannier, Erwan ; Laux, Christophe ; Cappelli, Mark A</creator><creatorcontrib>Yong, Taemin ; Zhong, Hongtao ; Pannier, Erwan ; Laux, Christophe ; Cappelli, Mark A ; Stanford Univ., CA (United States)</creatorcontrib><description>Herein we investigate the conversion of CO2 into CO and O2 with nanosecond repetitively pulsed (NRP) discharges in a high-pressure batch reactor. Stable discharges are obtained at up to 12 bar. By-products are measured with gas chromatography. The energy efficiency is determined for a range of processing times, pulse energy, and fill pressures. It is only weakly sensitive to the plasma operating parameters, i.e the extent of CO2 conversion is almost linearly-dependent on the specific energy invested. A conversion rate as high as 14% is achieved with an energy efficiency of 23%. For long processing times, saturation in the yield and a drop in efficiency are observed, due to the increasing role of three-body recombination reactions, as described by zero-dimensional detailed kinetic modeling. The modeling reveals the presence of three-stage kinetics between NRP pulses, controlled by electron-impact CO2 dissociation, vibrational relaxation, and neutral elementary kinetics. Transport effects are shown to be important for CO2 conversion at high pressures. For fill pressures beyond 10 bar, CO2 may locally transit into supercritical states. The supercritical plasma kinetics may bypass atomic oxygen pathways and directly convert CO2 into O2. This work provides a detailed analysis of plasma-based high-pressure CO2 conversion, which is of great relevance to future large-scale sustainable carbon capture, utilization, and storage.</description><identifier>ISSN: 0963-0252</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/1361-6595/ad066e</identifier><identifier>CODEN: PSTEEU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; carbon conversion ; chemistry ; CO2 dissociation ; dissociation ; high pressure ; nanosecond repetitively pulsed discharge ; plasma-based CO ; plasma-based CO2 chemistry</subject><ispartof>Plasma sources science &amp; technology, 2023-11, Vol.32 (11)</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9129-1186 ; 0000-0003-4064-6298 ; 0000-0003-3093-3357 ; 0000000291291186 ; 0000000340646298 ; 0000000330933357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2369208$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yong, Taemin</creatorcontrib><creatorcontrib>Zhong, Hongtao</creatorcontrib><creatorcontrib>Pannier, Erwan</creatorcontrib><creatorcontrib>Laux, Christophe</creatorcontrib><creatorcontrib>Cappelli, Mark A</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><title>High-pressure CO2 dissociation with nanosecond pulsed discharges</title><title>Plasma sources science &amp; technology</title><addtitle>PSST</addtitle><addtitle>Plasma Sources Sci. Technol</addtitle><description>Herein we investigate the conversion of CO2 into CO and O2 with nanosecond repetitively pulsed (NRP) discharges in a high-pressure batch reactor. Stable discharges are obtained at up to 12 bar. By-products are measured with gas chromatography. The energy efficiency is determined for a range of processing times, pulse energy, and fill pressures. It is only weakly sensitive to the plasma operating parameters, i.e the extent of CO2 conversion is almost linearly-dependent on the specific energy invested. A conversion rate as high as 14% is achieved with an energy efficiency of 23%. For long processing times, saturation in the yield and a drop in efficiency are observed, due to the increasing role of three-body recombination reactions, as described by zero-dimensional detailed kinetic modeling. The modeling reveals the presence of three-stage kinetics between NRP pulses, controlled by electron-impact CO2 dissociation, vibrational relaxation, and neutral elementary kinetics. Transport effects are shown to be important for CO2 conversion at high pressures. For fill pressures beyond 10 bar, CO2 may locally transit into supercritical states. The supercritical plasma kinetics may bypass atomic oxygen pathways and directly convert CO2 into O2. This work provides a detailed analysis of plasma-based high-pressure CO2 conversion, which is of great relevance to future large-scale sustainable carbon capture, utilization, and storage.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>carbon conversion</subject><subject>chemistry</subject><subject>CO2 dissociation</subject><subject>dissociation</subject><subject>high pressure</subject><subject>nanosecond repetitively pulsed discharge</subject><subject>plasma-based CO</subject><subject>plasma-based CO2 chemistry</subject><issn>0963-0252</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAURYMoWEf3Lotr6-Tlq8lOGdQRBmaj65Amr9MM0pSmg3_flhFXFy6Hy-UQcg_0CajWa-AKKiWNXLtAlcILUvxXl6SgRvGKMsmuyU3OR0oBNKsL8ryNh64aRsz5NGK52bMyxJyTj26KqS9_4tSVvetTRp_6UA6n74xhYXznxgPmW3LVurm7-8sV-Xp7_dxsq93-_WPzsqsiAzNVxkvRUGO4F47XtTcBAWsNMtRK1KwJEBoUTdsyIRvKhEdBgWvvUKPkAfiKPJx3U56izT5O6Lv5Uo9-sowrw6ieocczFNNgj-k09vMlC9Quiuziwy4-7FkR_wVxh1mQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Yong, Taemin</creator><creator>Zhong, Hongtao</creator><creator>Pannier, Erwan</creator><creator>Laux, Christophe</creator><creator>Cappelli, Mark A</creator><general>IOP Publishing</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9129-1186</orcidid><orcidid>https://orcid.org/0000-0003-4064-6298</orcidid><orcidid>https://orcid.org/0000-0003-3093-3357</orcidid><orcidid>https://orcid.org/0000000291291186</orcidid><orcidid>https://orcid.org/0000000340646298</orcidid><orcidid>https://orcid.org/0000000330933357</orcidid></search><sort><creationdate>20231101</creationdate><title>High-pressure CO2 dissociation with nanosecond pulsed discharges</title><author>Yong, Taemin ; Zhong, Hongtao ; Pannier, Erwan ; Laux, Christophe ; Cappelli, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-9c54b0993c4a377c9de1e7815d76472bd1dbe4bff245b024ce40138cae8e53d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>carbon conversion</topic><topic>chemistry</topic><topic>CO2 dissociation</topic><topic>dissociation</topic><topic>high pressure</topic><topic>nanosecond repetitively pulsed discharge</topic><topic>plasma-based CO</topic><topic>plasma-based CO2 chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yong, Taemin</creatorcontrib><creatorcontrib>Zhong, Hongtao</creatorcontrib><creatorcontrib>Pannier, Erwan</creatorcontrib><creatorcontrib>Laux, Christophe</creatorcontrib><creatorcontrib>Cappelli, Mark A</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Plasma sources science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yong, Taemin</au><au>Zhong, Hongtao</au><au>Pannier, Erwan</au><au>Laux, Christophe</au><au>Cappelli, Mark A</au><aucorp>Stanford Univ., CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-pressure CO2 dissociation with nanosecond pulsed discharges</atitle><jtitle>Plasma sources science &amp; technology</jtitle><stitle>PSST</stitle><addtitle>Plasma Sources Sci. Technol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>32</volume><issue>11</issue><issn>0963-0252</issn><eissn>1361-6595</eissn><coden>PSTEEU</coden><abstract>Herein we investigate the conversion of CO2 into CO and O2 with nanosecond repetitively pulsed (NRP) discharges in a high-pressure batch reactor. Stable discharges are obtained at up to 12 bar. By-products are measured with gas chromatography. The energy efficiency is determined for a range of processing times, pulse energy, and fill pressures. It is only weakly sensitive to the plasma operating parameters, i.e the extent of CO2 conversion is almost linearly-dependent on the specific energy invested. A conversion rate as high as 14% is achieved with an energy efficiency of 23%. For long processing times, saturation in the yield and a drop in efficiency are observed, due to the increasing role of three-body recombination reactions, as described by zero-dimensional detailed kinetic modeling. The modeling reveals the presence of three-stage kinetics between NRP pulses, controlled by electron-impact CO2 dissociation, vibrational relaxation, and neutral elementary kinetics. Transport effects are shown to be important for CO2 conversion at high pressures. For fill pressures beyond 10 bar, CO2 may locally transit into supercritical states. The supercritical plasma kinetics may bypass atomic oxygen pathways and directly convert CO2 into O2. This work provides a detailed analysis of plasma-based high-pressure CO2 conversion, which is of great relevance to future large-scale sustainable carbon capture, utilization, and storage.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1361-6595/ad066e</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9129-1186</orcidid><orcidid>https://orcid.org/0000-0003-4064-6298</orcidid><orcidid>https://orcid.org/0000-0003-3093-3357</orcidid><orcidid>https://orcid.org/0000000291291186</orcidid><orcidid>https://orcid.org/0000000340646298</orcidid><orcidid>https://orcid.org/0000000330933357</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0963-0252
ispartof Plasma sources science & technology, 2023-11, Vol.32 (11)
issn 0963-0252
1361-6595
language eng
recordid cdi_osti_scitechconnect_2369208
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
carbon conversion
chemistry
CO2 dissociation
dissociation
high pressure
nanosecond repetitively pulsed discharge
plasma-based CO
plasma-based CO2 chemistry
title High-pressure CO2 dissociation with nanosecond pulsed discharges
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-pressure%20CO2%20dissociation%20with%20nanosecond%20pulsed%20discharges&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Yong,%20Taemin&rft.aucorp=Stanford%20Univ.,%20CA%20(United%20States)&rft.date=2023-11-01&rft.volume=32&rft.issue=11&rft.issn=0963-0252&rft.eissn=1361-6595&rft.coden=PSTEEU&rft_id=info:doi/10.1088/1361-6595/ad066e&rft_dat=%3Ciop_osti_%3Epsstad066e%3C/iop_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i219t-9c54b0993c4a377c9de1e7815d76472bd1dbe4bff245b024ce40138cae8e53d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true