Loading…
Sparse-grid discontinuous Galerkin methods for the Vlasov–Poisson–Lenard–Bernstein model
Sparse-grid methods have recently gained interest in reducing the computational cost of solving high-dimensional kinetic equations. In this paper, we construct adaptive and hybrid sparse-grid methods for the Vlasov–Poisson–Lenard–Bernstein (VPLB) model. This model has applications to plasma physics...
Saved in:
Published in: | Journal of computational physics 2024-08, Vol.510, p.113053, Article 113053 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c276t-202fef729d3175e876e27ba0a6efa7a84ed36c9f753a7916971584261adf0b853 |
container_end_page | |
container_issue | |
container_start_page | 113053 |
container_title | Journal of computational physics |
container_volume | 510 |
creator | Schnake, Stefan Kendrick, Coleman Endeve, Eirik Stoyanov, Miroslav Hahn, Steven Hauck, Cory D. Green, David L. Snyder, Phil Canik, John |
description | Sparse-grid methods have recently gained interest in reducing the computational cost of solving high-dimensional kinetic equations. In this paper, we construct adaptive and hybrid sparse-grid methods for the Vlasov–Poisson–Lenard–Bernstein (VPLB) model. This model has applications to plasma physics and is simulated in two reduced geometries: a 0x3v space homogeneous geometry and a 1x3v slab geometry. We use the discontinuous Galerkin (DG) method as a base discretization due to its high-order accuracy and ability to preserve important structural properties of partial differential equations. We utilize a multiwavelet basis expansion to determine the sparse-grid basis and the adaptive mesh criteria. We analyze the proposed sparse-grid methods on a suite of three test problems by computing the savings afforded by sparse-grids in comparison to standard solutions of the DG method. The results are obtained using the adaptive sparse-grid discretization library ASGarD. |
doi_str_mv | 10.1016/j.jcp.2024.113053 |
format | article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2394732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999124003024</els_id><sourcerecordid>S0021999124003024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-202fef729d3175e876e27ba0a6efa7a84ed36c9f753a7916971584261adf0b853</originalsourceid><addsrcrecordid>eNp9kE1OwzAUhC0EEqVwAHYR-xT_JHEsVoCgIFUCiZ8llmu_UIc0rmy3EjvuwA05CY7CmtWbxXyjeYPQKcEzgkl13s5avZlRTIsZIQyXbA9NCBY4p5xU-2iCMSW5EIIcoqMQWoxxXRb1BL09bZQPkL97azJjg3Z9tP3WbUM2Vx34D9tna4grZ0LWOJ_FFWSvnQpu9_P1_ehsCK5PagG98iaJK_B9iDBQzkB3jA4a1QU4-btT9HJ783x9ly8e5vfXl4tcU17FPPVuoOFUGEZ4CTWvgPKlwqqCRnFVF2BYpUXDS6a4IJXgpKwLWhFlGrysSzZFZ2OuC9HKoG0EvUq_9KCjpEwUnNFkIqNJexeCh0ZuvF0r_ykJlsOKspVpRTmsKMcVE3MxMpDa7yz4IRx6Dcb6Ids4-w_9C07afgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sparse-grid discontinuous Galerkin methods for the Vlasov–Poisson–Lenard–Bernstein model</title><source>Elsevier</source><creator>Schnake, Stefan ; Kendrick, Coleman ; Endeve, Eirik ; Stoyanov, Miroslav ; Hahn, Steven ; Hauck, Cory D. ; Green, David L. ; Snyder, Phil ; Canik, John</creator><creatorcontrib>Schnake, Stefan ; Kendrick, Coleman ; Endeve, Eirik ; Stoyanov, Miroslav ; Hahn, Steven ; Hauck, Cory D. ; Green, David L. ; Snyder, Phil ; Canik, John ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Sparse-grid methods have recently gained interest in reducing the computational cost of solving high-dimensional kinetic equations. In this paper, we construct adaptive and hybrid sparse-grid methods for the Vlasov–Poisson–Lenard–Bernstein (VPLB) model. This model has applications to plasma physics and is simulated in two reduced geometries: a 0x3v space homogeneous geometry and a 1x3v slab geometry. We use the discontinuous Galerkin (DG) method as a base discretization due to its high-order accuracy and ability to preserve important structural properties of partial differential equations. We utilize a multiwavelet basis expansion to determine the sparse-grid basis and the adaptive mesh criteria. We analyze the proposed sparse-grid methods on a suite of three test problems by computing the savings afforded by sparse-grids in comparison to standard solutions of the DG method. The results are obtained using the adaptive sparse-grid discretization library ASGarD.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2024.113053</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Discontinuous Galerkin ; Implicit-explicit ; Kinetic equation ; Lenard-Bernstein ; MATHEMATICS AND COMPUTING ; Sparse grids ; Vlasov-Poisson</subject><ispartof>Journal of computational physics, 2024-08, Vol.510, p.113053, Article 113053</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-202fef729d3175e876e27ba0a6efa7a84ed36c9f753a7916971584261adf0b853</cites><orcidid>0000-0002-1518-3538 ; 0000000312519507 ; 0000000220187904 ; 000000015559502X ; 0000000169346681 ; 0000000188089844 ; 0000000215183538 ; 0000000281995577 ; 0000000331071170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2394732$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schnake, Stefan</creatorcontrib><creatorcontrib>Kendrick, Coleman</creatorcontrib><creatorcontrib>Endeve, Eirik</creatorcontrib><creatorcontrib>Stoyanov, Miroslav</creatorcontrib><creatorcontrib>Hahn, Steven</creatorcontrib><creatorcontrib>Hauck, Cory D.</creatorcontrib><creatorcontrib>Green, David L.</creatorcontrib><creatorcontrib>Snyder, Phil</creatorcontrib><creatorcontrib>Canik, John</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Sparse-grid discontinuous Galerkin methods for the Vlasov–Poisson–Lenard–Bernstein model</title><title>Journal of computational physics</title><description>Sparse-grid methods have recently gained interest in reducing the computational cost of solving high-dimensional kinetic equations. In this paper, we construct adaptive and hybrid sparse-grid methods for the Vlasov–Poisson–Lenard–Bernstein (VPLB) model. This model has applications to plasma physics and is simulated in two reduced geometries: a 0x3v space homogeneous geometry and a 1x3v slab geometry. We use the discontinuous Galerkin (DG) method as a base discretization due to its high-order accuracy and ability to preserve important structural properties of partial differential equations. We utilize a multiwavelet basis expansion to determine the sparse-grid basis and the adaptive mesh criteria. We analyze the proposed sparse-grid methods on a suite of three test problems by computing the savings afforded by sparse-grids in comparison to standard solutions of the DG method. The results are obtained using the adaptive sparse-grid discretization library ASGarD.</description><subject>Discontinuous Galerkin</subject><subject>Implicit-explicit</subject><subject>Kinetic equation</subject><subject>Lenard-Bernstein</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Sparse grids</subject><subject>Vlasov-Poisson</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAUhC0EEqVwAHYR-xT_JHEsVoCgIFUCiZ8llmu_UIc0rmy3EjvuwA05CY7CmtWbxXyjeYPQKcEzgkl13s5avZlRTIsZIQyXbA9NCBY4p5xU-2iCMSW5EIIcoqMQWoxxXRb1BL09bZQPkL97azJjg3Z9tP3WbUM2Vx34D9tna4grZ0LWOJ_FFWSvnQpu9_P1_ehsCK5PagG98iaJK_B9iDBQzkB3jA4a1QU4-btT9HJ783x9ly8e5vfXl4tcU17FPPVuoOFUGEZ4CTWvgPKlwqqCRnFVF2BYpUXDS6a4IJXgpKwLWhFlGrysSzZFZ2OuC9HKoG0EvUq_9KCjpEwUnNFkIqNJexeCh0ZuvF0r_ykJlsOKspVpRTmsKMcVE3MxMpDa7yz4IRx6Dcb6Ids4-w_9C07afgA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Schnake, Stefan</creator><creator>Kendrick, Coleman</creator><creator>Endeve, Eirik</creator><creator>Stoyanov, Miroslav</creator><creator>Hahn, Steven</creator><creator>Hauck, Cory D.</creator><creator>Green, David L.</creator><creator>Snyder, Phil</creator><creator>Canik, John</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1518-3538</orcidid><orcidid>https://orcid.org/0000000312519507</orcidid><orcidid>https://orcid.org/0000000220187904</orcidid><orcidid>https://orcid.org/000000015559502X</orcidid><orcidid>https://orcid.org/0000000169346681</orcidid><orcidid>https://orcid.org/0000000188089844</orcidid><orcidid>https://orcid.org/0000000215183538</orcidid><orcidid>https://orcid.org/0000000281995577</orcidid><orcidid>https://orcid.org/0000000331071170</orcidid></search><sort><creationdate>20240801</creationdate><title>Sparse-grid discontinuous Galerkin methods for the Vlasov–Poisson–Lenard–Bernstein model</title><author>Schnake, Stefan ; Kendrick, Coleman ; Endeve, Eirik ; Stoyanov, Miroslav ; Hahn, Steven ; Hauck, Cory D. ; Green, David L. ; Snyder, Phil ; Canik, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-202fef729d3175e876e27ba0a6efa7a84ed36c9f753a7916971584261adf0b853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Discontinuous Galerkin</topic><topic>Implicit-explicit</topic><topic>Kinetic equation</topic><topic>Lenard-Bernstein</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Sparse grids</topic><topic>Vlasov-Poisson</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schnake, Stefan</creatorcontrib><creatorcontrib>Kendrick, Coleman</creatorcontrib><creatorcontrib>Endeve, Eirik</creatorcontrib><creatorcontrib>Stoyanov, Miroslav</creatorcontrib><creatorcontrib>Hahn, Steven</creatorcontrib><creatorcontrib>Hauck, Cory D.</creatorcontrib><creatorcontrib>Green, David L.</creatorcontrib><creatorcontrib>Snyder, Phil</creatorcontrib><creatorcontrib>Canik, John</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schnake, Stefan</au><au>Kendrick, Coleman</au><au>Endeve, Eirik</au><au>Stoyanov, Miroslav</au><au>Hahn, Steven</au><au>Hauck, Cory D.</au><au>Green, David L.</au><au>Snyder, Phil</au><au>Canik, John</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse-grid discontinuous Galerkin methods for the Vlasov–Poisson–Lenard–Bernstein model</atitle><jtitle>Journal of computational physics</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>510</volume><spage>113053</spage><pages>113053-</pages><artnum>113053</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Sparse-grid methods have recently gained interest in reducing the computational cost of solving high-dimensional kinetic equations. In this paper, we construct adaptive and hybrid sparse-grid methods for the Vlasov–Poisson–Lenard–Bernstein (VPLB) model. This model has applications to plasma physics and is simulated in two reduced geometries: a 0x3v space homogeneous geometry and a 1x3v slab geometry. We use the discontinuous Galerkin (DG) method as a base discretization due to its high-order accuracy and ability to preserve important structural properties of partial differential equations. We utilize a multiwavelet basis expansion to determine the sparse-grid basis and the adaptive mesh criteria. We analyze the proposed sparse-grid methods on a suite of three test problems by computing the savings afforded by sparse-grids in comparison to standard solutions of the DG method. The results are obtained using the adaptive sparse-grid discretization library ASGarD.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2024.113053</doi><orcidid>https://orcid.org/0000-0002-1518-3538</orcidid><orcidid>https://orcid.org/0000000312519507</orcidid><orcidid>https://orcid.org/0000000220187904</orcidid><orcidid>https://orcid.org/000000015559502X</orcidid><orcidid>https://orcid.org/0000000169346681</orcidid><orcidid>https://orcid.org/0000000188089844</orcidid><orcidid>https://orcid.org/0000000215183538</orcidid><orcidid>https://orcid.org/0000000281995577</orcidid><orcidid>https://orcid.org/0000000331071170</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2024-08, Vol.510, p.113053, Article 113053 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_2394732 |
source | Elsevier |
subjects | Discontinuous Galerkin Implicit-explicit Kinetic equation Lenard-Bernstein MATHEMATICS AND COMPUTING Sparse grids Vlasov-Poisson |
title | Sparse-grid discontinuous Galerkin methods for the Vlasov–Poisson–Lenard–Bernstein model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse-grid%20discontinuous%20Galerkin%20methods%20for%20the%20Vlasov%E2%80%93Poisson%E2%80%93Lenard%E2%80%93Bernstein%20model&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Schnake,%20Stefan&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-08-01&rft.volume=510&rft.spage=113053&rft.pages=113053-&rft.artnum=113053&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2024.113053&rft_dat=%3Celsevier_osti_%3ES0021999124003024%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c276t-202fef729d3175e876e27ba0a6efa7a84ed36c9f753a7916971584261adf0b853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |