Loading…

Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi

The strongly correlated material FeSi displays several unusual thermal, magnetic, and structural properties under varying pressure–temperature (P–T) conditions. It is a potential thermoelectric alloy and a material with several geochemical implications as a possible constituent at the Earth’s core-m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2024-05, Vol.128 (21), p.8774-8784
Main Authors: Kumar, Ravhi S., Liu, Han, Li, Quan, Xiao, Yuming, Chow, Paul, Meng, Yue, Hu, Michael Y., Alp, Esen Ercan, Hemley, Russell J., Chen, Changfeng, Cornelius, Andrew L., Fisk, Zachary
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a260t-70da69f115a8d23db558f6fb8f45c28c43c20d3461c43c710d687fa507557fb23
container_end_page 8784
container_issue 21
container_start_page 8774
container_title Journal of physical chemistry. C
container_volume 128
creator Kumar, Ravhi S.
Liu, Han
Li, Quan
Xiao, Yuming
Chow, Paul
Meng, Yue
Hu, Michael Y.
Alp, Esen Ercan
Hemley, Russell J.
Chen, Changfeng
Cornelius, Andrew L.
Fisk, Zachary
description The strongly correlated material FeSi displays several unusual thermal, magnetic, and structural properties under varying pressure–temperature (P–T) conditions. It is a potential thermoelectric alloy and a material with several geochemical implications as a possible constituent at the Earth’s core-mantle boundary (CMB). Previous theoretical studies predicted a pressure-induced B20–B2 transition at ambient temperature below 40 GPa; however, experimentally, the structural transition is observed only under high P–T conditions. In this study, we have performed high-pressure powder X-ray diffraction (XRD) up to 90 GPa and Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements up to 120 GPa to understand the phase stability and lattice dynamics. Our study provides evidence for a nonhydrostatic stress-induced B20–B2 transition in FeSi at around 36 GPa. We deduced the Fe partial phonon density of states (PDOS) and thermal parameters from NRIXS measurements up to 120 GPa and compared them with density functional theory (DFT) calculations. Additionally, the computations show pressure-induced metallization and band gap closing at around 12 GPa.
doi_str_mv 10.1021/acs.jpcc.4c00626
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2396921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c83671367</sourcerecordid><originalsourceid>FETCH-LOGICAL-a260t-70da69f115a8d23db558f6fb8f45c28c43c20d3461c43c710d687fa507557fb23</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKt3j4tnt06STbJ7lNqqULBQPYc0m9AtNSmZ9NB_764t3jzNY-a9gfcRck9hQoHRJ2Nxst1bO6ksgGTygoxow1mpKiEu_3SlrskN4hZAcKB8RBYz753NRfTFMjnEQ3JFDMU0HTGbXbHK6WDzsDShLZabGPrjiwvY5eOQWWWTHQ5q7lbdLbnyZofu7jzH5Gs--5y-lYuP1_fp86I0TEIuFbRGNp5SYeqW8XYtRO2lX9e-EpbVtuKWQcsrSQepKLSyVt4IUEIov2Z8TB5OfyPmTqPtsrMbG0Pom2jGG9kw2pvgZLIpIibn9T513yYdNQU9INM9Mj0g02dkfeTxFPm9xEMKfYv_7T89z25v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kumar, Ravhi S. ; Liu, Han ; Li, Quan ; Xiao, Yuming ; Chow, Paul ; Meng, Yue ; Hu, Michael Y. ; Alp, Esen Ercan ; Hemley, Russell J. ; Chen, Changfeng ; Cornelius, Andrew L. ; Fisk, Zachary</creator><creatorcontrib>Kumar, Ravhi S. ; Liu, Han ; Li, Quan ; Xiao, Yuming ; Chow, Paul ; Meng, Yue ; Hu, Michael Y. ; Alp, Esen Ercan ; Hemley, Russell J. ; Chen, Changfeng ; Cornelius, Andrew L. ; Fisk, Zachary ; University of Illinois, Chicago, IL (United States)</creatorcontrib><description>The strongly correlated material FeSi displays several unusual thermal, magnetic, and structural properties under varying pressure–temperature (P–T) conditions. It is a potential thermoelectric alloy and a material with several geochemical implications as a possible constituent at the Earth’s core-mantle boundary (CMB). Previous theoretical studies predicted a pressure-induced B20–B2 transition at ambient temperature below 40 GPa; however, experimentally, the structural transition is observed only under high P–T conditions. In this study, we have performed high-pressure powder X-ray diffraction (XRD) up to 90 GPa and Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements up to 120 GPa to understand the phase stability and lattice dynamics. Our study provides evidence for a nonhydrostatic stress-induced B20–B2 transition in FeSi at around 36 GPa. We deduced the Fe partial phonon density of states (PDOS) and thermal parameters from NRIXS measurements up to 120 GPa and compared them with density functional theory (DFT) calculations. Additionally, the computations show pressure-induced metallization and band gap closing at around 12 GPa.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.4c00626</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces ; Chemical structure ; Compression ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Phase transitions ; Phonons ; Stress</subject><ispartof>Journal of physical chemistry. C, 2024-05, Vol.128 (21), p.8774-8784</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a260t-70da69f115a8d23db558f6fb8f45c28c43c20d3461c43c710d687fa507557fb23</cites><orcidid>0000-0001-7398-8521 ; 0000-0002-7724-1289 ; 0000-0002-1967-1619 ; 0000000173988521 ; 0000000219671619 ; 0000000277241289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2396921$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Ravhi S.</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Xiao, Yuming</creatorcontrib><creatorcontrib>Chow, Paul</creatorcontrib><creatorcontrib>Meng, Yue</creatorcontrib><creatorcontrib>Hu, Michael Y.</creatorcontrib><creatorcontrib>Alp, Esen Ercan</creatorcontrib><creatorcontrib>Hemley, Russell J.</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><creatorcontrib>Cornelius, Andrew L.</creatorcontrib><creatorcontrib>Fisk, Zachary</creatorcontrib><creatorcontrib>University of Illinois, Chicago, IL (United States)</creatorcontrib><title>Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The strongly correlated material FeSi displays several unusual thermal, magnetic, and structural properties under varying pressure–temperature (P–T) conditions. It is a potential thermoelectric alloy and a material with several geochemical implications as a possible constituent at the Earth’s core-mantle boundary (CMB). Previous theoretical studies predicted a pressure-induced B20–B2 transition at ambient temperature below 40 GPa; however, experimentally, the structural transition is observed only under high P–T conditions. In this study, we have performed high-pressure powder X-ray diffraction (XRD) up to 90 GPa and Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements up to 120 GPa to understand the phase stability and lattice dynamics. Our study provides evidence for a nonhydrostatic stress-induced B20–B2 transition in FeSi at around 36 GPa. We deduced the Fe partial phonon density of states (PDOS) and thermal parameters from NRIXS measurements up to 120 GPa and compared them with density functional theory (DFT) calculations. Additionally, the computations show pressure-induced metallization and band gap closing at around 12 GPa.</description><subject>C: Physical Properties of Materials and Interfaces</subject><subject>Chemical structure</subject><subject>Compression</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Phase transitions</subject><subject>Phonons</subject><subject>Stress</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKt3j4tnt06STbJ7lNqqULBQPYc0m9AtNSmZ9NB_764t3jzNY-a9gfcRck9hQoHRJ2Nxst1bO6ksgGTygoxow1mpKiEu_3SlrskN4hZAcKB8RBYz753NRfTFMjnEQ3JFDMU0HTGbXbHK6WDzsDShLZabGPrjiwvY5eOQWWWTHQ5q7lbdLbnyZofu7jzH5Gs--5y-lYuP1_fp86I0TEIuFbRGNp5SYeqW8XYtRO2lX9e-EpbVtuKWQcsrSQepKLSyVt4IUEIov2Z8TB5OfyPmTqPtsrMbG0Pom2jGG9kw2pvgZLIpIibn9T513yYdNQU9INM9Mj0g02dkfeTxFPm9xEMKfYv_7T89z25v</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Kumar, Ravhi S.</creator><creator>Liu, Han</creator><creator>Li, Quan</creator><creator>Xiao, Yuming</creator><creator>Chow, Paul</creator><creator>Meng, Yue</creator><creator>Hu, Michael Y.</creator><creator>Alp, Esen Ercan</creator><creator>Hemley, Russell J.</creator><creator>Chen, Changfeng</creator><creator>Cornelius, Andrew L.</creator><creator>Fisk, Zachary</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7398-8521</orcidid><orcidid>https://orcid.org/0000-0002-7724-1289</orcidid><orcidid>https://orcid.org/0000-0002-1967-1619</orcidid><orcidid>https://orcid.org/0000000173988521</orcidid><orcidid>https://orcid.org/0000000219671619</orcidid><orcidid>https://orcid.org/0000000277241289</orcidid></search><sort><creationdate>20240530</creationdate><title>Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi</title><author>Kumar, Ravhi S. ; Liu, Han ; Li, Quan ; Xiao, Yuming ; Chow, Paul ; Meng, Yue ; Hu, Michael Y. ; Alp, Esen Ercan ; Hemley, Russell J. ; Chen, Changfeng ; Cornelius, Andrew L. ; Fisk, Zachary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a260t-70da69f115a8d23db558f6fb8f45c28c43c20d3461c43c710d687fa507557fb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><topic>Chemical structure</topic><topic>Compression</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Phase transitions</topic><topic>Phonons</topic><topic>Stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Ravhi S.</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Xiao, Yuming</creatorcontrib><creatorcontrib>Chow, Paul</creatorcontrib><creatorcontrib>Meng, Yue</creatorcontrib><creatorcontrib>Hu, Michael Y.</creatorcontrib><creatorcontrib>Alp, Esen Ercan</creatorcontrib><creatorcontrib>Hemley, Russell J.</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><creatorcontrib>Cornelius, Andrew L.</creatorcontrib><creatorcontrib>Fisk, Zachary</creatorcontrib><creatorcontrib>University of Illinois, Chicago, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Ravhi S.</au><au>Liu, Han</au><au>Li, Quan</au><au>Xiao, Yuming</au><au>Chow, Paul</au><au>Meng, Yue</au><au>Hu, Michael Y.</au><au>Alp, Esen Ercan</au><au>Hemley, Russell J.</au><au>Chen, Changfeng</au><au>Cornelius, Andrew L.</au><au>Fisk, Zachary</au><aucorp>University of Illinois, Chicago, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>128</volume><issue>21</issue><spage>8774</spage><epage>8784</epage><pages>8774-8784</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The strongly correlated material FeSi displays several unusual thermal, magnetic, and structural properties under varying pressure–temperature (P–T) conditions. It is a potential thermoelectric alloy and a material with several geochemical implications as a possible constituent at the Earth’s core-mantle boundary (CMB). Previous theoretical studies predicted a pressure-induced B20–B2 transition at ambient temperature below 40 GPa; however, experimentally, the structural transition is observed only under high P–T conditions. In this study, we have performed high-pressure powder X-ray diffraction (XRD) up to 90 GPa and Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements up to 120 GPa to understand the phase stability and lattice dynamics. Our study provides evidence for a nonhydrostatic stress-induced B20–B2 transition in FeSi at around 36 GPa. We deduced the Fe partial phonon density of states (PDOS) and thermal parameters from NRIXS measurements up to 120 GPa and compared them with density functional theory (DFT) calculations. Additionally, the computations show pressure-induced metallization and band gap closing at around 12 GPa.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.4c00626</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7398-8521</orcidid><orcidid>https://orcid.org/0000-0002-7724-1289</orcidid><orcidid>https://orcid.org/0000-0002-1967-1619</orcidid><orcidid>https://orcid.org/0000000173988521</orcidid><orcidid>https://orcid.org/0000000219671619</orcidid><orcidid>https://orcid.org/0000000277241289</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2024-05, Vol.128 (21), p.8774-8784
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_2396921
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Physical Properties of Materials and Interfaces
Chemical structure
Compression
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Phase transitions
Phonons
Stress
title Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Pressure%20on%20Crystal%20Structure%20and%20Phonon%20Density%20of%20States%20of%20FeSi&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kumar,%20Ravhi%20S.&rft.aucorp=University%20of%20Illinois,%20Chicago,%20IL%20(United%20States)&rft.date=2024-05-30&rft.volume=128&rft.issue=21&rft.spage=8774&rft.epage=8784&rft.pages=8774-8784&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.4c00626&rft_dat=%3Cacs_osti_%3Ec83671367%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a260t-70da69f115a8d23db558f6fb8f45c28c43c20d3461c43c710d687fa507557fb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true