Loading…
Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi
The strongly correlated material FeSi displays several unusual thermal, magnetic, and structural properties under varying pressure–temperature (P–T) conditions. It is a potential thermoelectric alloy and a material with several geochemical implications as a possible constituent at the Earth’s core-m...
Saved in:
Published in: | Journal of physical chemistry. C 2024-05, Vol.128 (21), p.8774-8784 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a260t-70da69f115a8d23db558f6fb8f45c28c43c20d3461c43c710d687fa507557fb23 |
container_end_page | 8784 |
container_issue | 21 |
container_start_page | 8774 |
container_title | Journal of physical chemistry. C |
container_volume | 128 |
creator | Kumar, Ravhi S. Liu, Han Li, Quan Xiao, Yuming Chow, Paul Meng, Yue Hu, Michael Y. Alp, Esen Ercan Hemley, Russell J. Chen, Changfeng Cornelius, Andrew L. Fisk, Zachary |
description | The strongly correlated material FeSi displays several unusual thermal, magnetic, and structural properties under varying pressure–temperature (P–T) conditions. It is a potential thermoelectric alloy and a material with several geochemical implications as a possible constituent at the Earth’s core-mantle boundary (CMB). Previous theoretical studies predicted a pressure-induced B20–B2 transition at ambient temperature below 40 GPa; however, experimentally, the structural transition is observed only under high P–T conditions. In this study, we have performed high-pressure powder X-ray diffraction (XRD) up to 90 GPa and Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements up to 120 GPa to understand the phase stability and lattice dynamics. Our study provides evidence for a nonhydrostatic stress-induced B20–B2 transition in FeSi at around 36 GPa. We deduced the Fe partial phonon density of states (PDOS) and thermal parameters from NRIXS measurements up to 120 GPa and compared them with density functional theory (DFT) calculations. Additionally, the computations show pressure-induced metallization and band gap closing at around 12 GPa. |
doi_str_mv | 10.1021/acs.jpcc.4c00626 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2396921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c83671367</sourcerecordid><originalsourceid>FETCH-LOGICAL-a260t-70da69f115a8d23db558f6fb8f45c28c43c20d3461c43c710d687fa507557fb23</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKt3j4tnt06STbJ7lNqqULBQPYc0m9AtNSmZ9NB_764t3jzNY-a9gfcRck9hQoHRJ2Nxst1bO6ksgGTygoxow1mpKiEu_3SlrskN4hZAcKB8RBYz753NRfTFMjnEQ3JFDMU0HTGbXbHK6WDzsDShLZabGPrjiwvY5eOQWWWTHQ5q7lbdLbnyZofu7jzH5Gs--5y-lYuP1_fp86I0TEIuFbRGNp5SYeqW8XYtRO2lX9e-EpbVtuKWQcsrSQepKLSyVt4IUEIov2Z8TB5OfyPmTqPtsrMbG0Pom2jGG9kw2pvgZLIpIibn9T513yYdNQU9INM9Mj0g02dkfeTxFPm9xEMKfYv_7T89z25v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kumar, Ravhi S. ; Liu, Han ; Li, Quan ; Xiao, Yuming ; Chow, Paul ; Meng, Yue ; Hu, Michael Y. ; Alp, Esen Ercan ; Hemley, Russell J. ; Chen, Changfeng ; Cornelius, Andrew L. ; Fisk, Zachary</creator><creatorcontrib>Kumar, Ravhi S. ; Liu, Han ; Li, Quan ; Xiao, Yuming ; Chow, Paul ; Meng, Yue ; Hu, Michael Y. ; Alp, Esen Ercan ; Hemley, Russell J. ; Chen, Changfeng ; Cornelius, Andrew L. ; Fisk, Zachary ; University of Illinois, Chicago, IL (United States)</creatorcontrib><description>The strongly correlated material FeSi displays several unusual thermal, magnetic, and structural properties under varying pressure–temperature (P–T) conditions. It is a potential thermoelectric alloy and a material with several geochemical implications as a possible constituent at the Earth’s core-mantle boundary (CMB). Previous theoretical studies predicted a pressure-induced B20–B2 transition at ambient temperature below 40 GPa; however, experimentally, the structural transition is observed only under high P–T conditions. In this study, we have performed high-pressure powder X-ray diffraction (XRD) up to 90 GPa and Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements up to 120 GPa to understand the phase stability and lattice dynamics. Our study provides evidence for a nonhydrostatic stress-induced B20–B2 transition in FeSi at around 36 GPa. We deduced the Fe partial phonon density of states (PDOS) and thermal parameters from NRIXS measurements up to 120 GPa and compared them with density functional theory (DFT) calculations. Additionally, the computations show pressure-induced metallization and band gap closing at around 12 GPa.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.4c00626</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces ; Chemical structure ; Compression ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Phase transitions ; Phonons ; Stress</subject><ispartof>Journal of physical chemistry. C, 2024-05, Vol.128 (21), p.8774-8784</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a260t-70da69f115a8d23db558f6fb8f45c28c43c20d3461c43c710d687fa507557fb23</cites><orcidid>0000-0001-7398-8521 ; 0000-0002-7724-1289 ; 0000-0002-1967-1619 ; 0000000173988521 ; 0000000219671619 ; 0000000277241289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2396921$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Ravhi S.</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Xiao, Yuming</creatorcontrib><creatorcontrib>Chow, Paul</creatorcontrib><creatorcontrib>Meng, Yue</creatorcontrib><creatorcontrib>Hu, Michael Y.</creatorcontrib><creatorcontrib>Alp, Esen Ercan</creatorcontrib><creatorcontrib>Hemley, Russell J.</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><creatorcontrib>Cornelius, Andrew L.</creatorcontrib><creatorcontrib>Fisk, Zachary</creatorcontrib><creatorcontrib>University of Illinois, Chicago, IL (United States)</creatorcontrib><title>Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The strongly correlated material FeSi displays several unusual thermal, magnetic, and structural properties under varying pressure–temperature (P–T) conditions. It is a potential thermoelectric alloy and a material with several geochemical implications as a possible constituent at the Earth’s core-mantle boundary (CMB). Previous theoretical studies predicted a pressure-induced B20–B2 transition at ambient temperature below 40 GPa; however, experimentally, the structural transition is observed only under high P–T conditions. In this study, we have performed high-pressure powder X-ray diffraction (XRD) up to 90 GPa and Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements up to 120 GPa to understand the phase stability and lattice dynamics. Our study provides evidence for a nonhydrostatic stress-induced B20–B2 transition in FeSi at around 36 GPa. We deduced the Fe partial phonon density of states (PDOS) and thermal parameters from NRIXS measurements up to 120 GPa and compared them with density functional theory (DFT) calculations. Additionally, the computations show pressure-induced metallization and band gap closing at around 12 GPa.</description><subject>C: Physical Properties of Materials and Interfaces</subject><subject>Chemical structure</subject><subject>Compression</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Phase transitions</subject><subject>Phonons</subject><subject>Stress</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKt3j4tnt06STbJ7lNqqULBQPYc0m9AtNSmZ9NB_764t3jzNY-a9gfcRck9hQoHRJ2Nxst1bO6ksgGTygoxow1mpKiEu_3SlrskN4hZAcKB8RBYz753NRfTFMjnEQ3JFDMU0HTGbXbHK6WDzsDShLZabGPrjiwvY5eOQWWWTHQ5q7lbdLbnyZofu7jzH5Gs--5y-lYuP1_fp86I0TEIuFbRGNp5SYeqW8XYtRO2lX9e-EpbVtuKWQcsrSQepKLSyVt4IUEIov2Z8TB5OfyPmTqPtsrMbG0Pom2jGG9kw2pvgZLIpIibn9T513yYdNQU9INM9Mj0g02dkfeTxFPm9xEMKfYv_7T89z25v</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Kumar, Ravhi S.</creator><creator>Liu, Han</creator><creator>Li, Quan</creator><creator>Xiao, Yuming</creator><creator>Chow, Paul</creator><creator>Meng, Yue</creator><creator>Hu, Michael Y.</creator><creator>Alp, Esen Ercan</creator><creator>Hemley, Russell J.</creator><creator>Chen, Changfeng</creator><creator>Cornelius, Andrew L.</creator><creator>Fisk, Zachary</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7398-8521</orcidid><orcidid>https://orcid.org/0000-0002-7724-1289</orcidid><orcidid>https://orcid.org/0000-0002-1967-1619</orcidid><orcidid>https://orcid.org/0000000173988521</orcidid><orcidid>https://orcid.org/0000000219671619</orcidid><orcidid>https://orcid.org/0000000277241289</orcidid></search><sort><creationdate>20240530</creationdate><title>Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi</title><author>Kumar, Ravhi S. ; Liu, Han ; Li, Quan ; Xiao, Yuming ; Chow, Paul ; Meng, Yue ; Hu, Michael Y. ; Alp, Esen Ercan ; Hemley, Russell J. ; Chen, Changfeng ; Cornelius, Andrew L. ; Fisk, Zachary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a260t-70da69f115a8d23db558f6fb8f45c28c43c20d3461c43c710d687fa507557fb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><topic>Chemical structure</topic><topic>Compression</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Phase transitions</topic><topic>Phonons</topic><topic>Stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Ravhi S.</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Xiao, Yuming</creatorcontrib><creatorcontrib>Chow, Paul</creatorcontrib><creatorcontrib>Meng, Yue</creatorcontrib><creatorcontrib>Hu, Michael Y.</creatorcontrib><creatorcontrib>Alp, Esen Ercan</creatorcontrib><creatorcontrib>Hemley, Russell J.</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><creatorcontrib>Cornelius, Andrew L.</creatorcontrib><creatorcontrib>Fisk, Zachary</creatorcontrib><creatorcontrib>University of Illinois, Chicago, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Ravhi S.</au><au>Liu, Han</au><au>Li, Quan</au><au>Xiao, Yuming</au><au>Chow, Paul</au><au>Meng, Yue</au><au>Hu, Michael Y.</au><au>Alp, Esen Ercan</au><au>Hemley, Russell J.</au><au>Chen, Changfeng</au><au>Cornelius, Andrew L.</au><au>Fisk, Zachary</au><aucorp>University of Illinois, Chicago, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>128</volume><issue>21</issue><spage>8774</spage><epage>8784</epage><pages>8774-8784</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The strongly correlated material FeSi displays several unusual thermal, magnetic, and structural properties under varying pressure–temperature (P–T) conditions. It is a potential thermoelectric alloy and a material with several geochemical implications as a possible constituent at the Earth’s core-mantle boundary (CMB). Previous theoretical studies predicted a pressure-induced B20–B2 transition at ambient temperature below 40 GPa; however, experimentally, the structural transition is observed only under high P–T conditions. In this study, we have performed high-pressure powder X-ray diffraction (XRD) up to 90 GPa and Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements up to 120 GPa to understand the phase stability and lattice dynamics. Our study provides evidence for a nonhydrostatic stress-induced B20–B2 transition in FeSi at around 36 GPa. We deduced the Fe partial phonon density of states (PDOS) and thermal parameters from NRIXS measurements up to 120 GPa and compared them with density functional theory (DFT) calculations. Additionally, the computations show pressure-induced metallization and band gap closing at around 12 GPa.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.4c00626</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7398-8521</orcidid><orcidid>https://orcid.org/0000-0002-7724-1289</orcidid><orcidid>https://orcid.org/0000-0002-1967-1619</orcidid><orcidid>https://orcid.org/0000000173988521</orcidid><orcidid>https://orcid.org/0000000219671619</orcidid><orcidid>https://orcid.org/0000000277241289</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2024-05, Vol.128 (21), p.8774-8784 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_2396921 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | C: Physical Properties of Materials and Interfaces Chemical structure Compression INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Phase transitions Phonons Stress |
title | Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Pressure%20on%20Crystal%20Structure%20and%20Phonon%20Density%20of%20States%20of%20FeSi&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kumar,%20Ravhi%20S.&rft.aucorp=University%20of%20Illinois,%20Chicago,%20IL%20(United%20States)&rft.date=2024-05-30&rft.volume=128&rft.issue=21&rft.spage=8774&rft.epage=8784&rft.pages=8774-8784&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.4c00626&rft_dat=%3Cacs_osti_%3Ec83671367%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a260t-70da69f115a8d23db558f6fb8f45c28c43c20d3461c43c710d687fa507557fb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |