Loading…

Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes

Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2024-07, Vol.16 (27), p.34830-34839
Main Authors: Kabra, Venkatesh, Carter, Rachel, Li, Mengya, Fear, Conner, Atkinson, Robert W., Love, Corey, Mukherjee, Partha P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a242t-f7f2116e6fee58d642dbbbcc736200b24d3391d6c586d3673d17dd6e786083e03
container_end_page 34839
container_issue 27
container_start_page 34830
container_title ACS applied materials & interfaces
container_volume 16
creator Kabra, Venkatesh
Carter, Rachel
Li, Mengya
Fear, Conner
Atkinson, Robert W.
Love, Corey
Mukherjee, Partha P.
description Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well understood. Herein, we combine an experimental plating-prone condition with robust mesoscale modeling to examine electrode pairings with capacities ranging from 2.5 to 6 mAh/cm2 and negative to positive (N/P) electrode areal capacity ratio from 0.9 to 1.8 without the need for extensive aging tests. Using both experimentation and a mesoscale model, we identify a shift from conventional high state-of-charge (SOC) type plating to high overpotential (OP) type plating as electrode thickness increases. These two plating modes have distinct morphologies, identified by optical microscopy and electrochemical signatures. We demonstrate that under operating conditions where these plating modes converge, a high propensity of plating exists, revealing the importance of predicting and avoiding this overlap for a given electrode pairing. Further, we identify that thicker electrodes, beyond a capacity of 3 mAh/cm2 or thickness >75 μm, are prone to high OP, limiting negative electrode (NE) utilization and preventing cross-sectional oversizing the NE from mitigating plating. Here, it simply contributes to added mass and volume. The experimental thermal gradient and mesoscale model either combined or independently provide techniques capable of probing performance and safety implications of mild changes to electrode design features.
doi_str_mv 10.1021/acsami.4c02516
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2397412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073654409</sourcerecordid><originalsourceid>FETCH-LOGICAL-a242t-f7f2116e6fee58d642dbbbcc736200b24d3391d6c586d3673d17dd6e786083e03</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqWwMiKLCSGl-BUnGUtVaKVKdIDZcmyndZVHsZ2h_x6jlG5M9w7nfvfTAeAeoylGBL9I5WVjp0whkmJ-Aca4YCzJSUouzztjI3Dj_R4hTglKr8GI5gXDaZaPwWZtw872DdzUMth2C-c76aQKxlkfrPLQtnBptzs4c0bWcC4PUtlwhGubrLoWvsoQ0SNc1EYF12njb8FVJWtv7k5zAr7eFp_zZbL-eF_NZ-tEEkZCUmUVwZgbXhmT5pozosuyVCqjnCBUEqYpLbDmKs25pjyjGmdac5PlHOXUIDoBj0NuF3sKH0sZtVNd28YigtAiY5hE6GmADq777o0PorFembqWrel6LyiK_1LGUBHR6YAq13nvTCUOzjbSHQVG4le1GFSLk-p48HDK7svG6DP-5zYCzwMQD8W-610bffyX9gOjdod6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073654409</pqid></control><display><type>article</type><title>Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kabra, Venkatesh ; Carter, Rachel ; Li, Mengya ; Fear, Conner ; Atkinson, Robert W. ; Love, Corey ; Mukherjee, Partha P.</creator><creatorcontrib>Kabra, Venkatesh ; Carter, Rachel ; Li, Mengya ; Fear, Conner ; Atkinson, Robert W. ; Love, Corey ; Mukherjee, Partha P. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well understood. Herein, we combine an experimental plating-prone condition with robust mesoscale modeling to examine electrode pairings with capacities ranging from 2.5 to 6 mAh/cm2 and negative to positive (N/P) electrode areal capacity ratio from 0.9 to 1.8 without the need for extensive aging tests. Using both experimentation and a mesoscale model, we identify a shift from conventional high state-of-charge (SOC) type plating to high overpotential (OP) type plating as electrode thickness increases. These two plating modes have distinct morphologies, identified by optical microscopy and electrochemical signatures. We demonstrate that under operating conditions where these plating modes converge, a high propensity of plating exists, revealing the importance of predicting and avoiding this overlap for a given electrode pairing. Further, we identify that thicker electrodes, beyond a capacity of 3 mAh/cm2 or thickness &gt;75 μm, are prone to high OP, limiting negative electrode (NE) utilization and preventing cross-sectional oversizing the NE from mitigating plating. Here, it simply contributes to added mass and volume. The experimental thermal gradient and mesoscale model either combined or independently provide techniques capable of probing performance and safety implications of mild changes to electrode design features.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c02516</identifier><identifier>PMID: 38941578</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electrical properties ; Electrochemical cells ; Electrodes ; ENERGY STORAGE ; Energy, Environmental, and Catalysis Applications ; Lithium ; Thickness</subject><ispartof>ACS applied materials &amp; interfaces, 2024-07, Vol.16 (27), p.34830-34839</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a242t-f7f2116e6fee58d642dbbbcc736200b24d3391d6c586d3673d17dd6e786083e03</cites><orcidid>0000-0001-6583-1049 ; 0000-0003-2581-3625 ; 0000-0001-7900-7261 ; 0000-0002-9581-4044 ; 0000000165831049 ; 0000000325813625 ; 0000000179007261 ; 0000000295814044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38941578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2397412$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kabra, Venkatesh</creatorcontrib><creatorcontrib>Carter, Rachel</creatorcontrib><creatorcontrib>Li, Mengya</creatorcontrib><creatorcontrib>Fear, Conner</creatorcontrib><creatorcontrib>Atkinson, Robert W.</creatorcontrib><creatorcontrib>Love, Corey</creatorcontrib><creatorcontrib>Mukherjee, Partha P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well understood. Herein, we combine an experimental plating-prone condition with robust mesoscale modeling to examine electrode pairings with capacities ranging from 2.5 to 6 mAh/cm2 and negative to positive (N/P) electrode areal capacity ratio from 0.9 to 1.8 without the need for extensive aging tests. Using both experimentation and a mesoscale model, we identify a shift from conventional high state-of-charge (SOC) type plating to high overpotential (OP) type plating as electrode thickness increases. These two plating modes have distinct morphologies, identified by optical microscopy and electrochemical signatures. We demonstrate that under operating conditions where these plating modes converge, a high propensity of plating exists, revealing the importance of predicting and avoiding this overlap for a given electrode pairing. Further, we identify that thicker electrodes, beyond a capacity of 3 mAh/cm2 or thickness &gt;75 μm, are prone to high OP, limiting negative electrode (NE) utilization and preventing cross-sectional oversizing the NE from mitigating plating. Here, it simply contributes to added mass and volume. The experimental thermal gradient and mesoscale model either combined or independently provide techniques capable of probing performance and safety implications of mild changes to electrode design features.</description><subject>Electrical properties</subject><subject>Electrochemical cells</subject><subject>Electrodes</subject><subject>ENERGY STORAGE</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>Lithium</subject><subject>Thickness</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EoqWwMiKLCSGl-BUnGUtVaKVKdIDZcmyndZVHsZ2h_x6jlG5M9w7nfvfTAeAeoylGBL9I5WVjp0whkmJ-Aca4YCzJSUouzztjI3Dj_R4hTglKr8GI5gXDaZaPwWZtw872DdzUMth2C-c76aQKxlkfrPLQtnBptzs4c0bWcC4PUtlwhGubrLoWvsoQ0SNc1EYF12njb8FVJWtv7k5zAr7eFp_zZbL-eF_NZ-tEEkZCUmUVwZgbXhmT5pozosuyVCqjnCBUEqYpLbDmKs25pjyjGmdac5PlHOXUIDoBj0NuF3sKH0sZtVNd28YigtAiY5hE6GmADq777o0PorFembqWrel6LyiK_1LGUBHR6YAq13nvTCUOzjbSHQVG4le1GFSLk-p48HDK7svG6DP-5zYCzwMQD8W-610bffyX9gOjdod6</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Kabra, Venkatesh</creator><creator>Carter, Rachel</creator><creator>Li, Mengya</creator><creator>Fear, Conner</creator><creator>Atkinson, Robert W.</creator><creator>Love, Corey</creator><creator>Mukherjee, Partha P.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6583-1049</orcidid><orcidid>https://orcid.org/0000-0003-2581-3625</orcidid><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid><orcidid>https://orcid.org/0000-0002-9581-4044</orcidid><orcidid>https://orcid.org/0000000165831049</orcidid><orcidid>https://orcid.org/0000000325813625</orcidid><orcidid>https://orcid.org/0000000179007261</orcidid><orcidid>https://orcid.org/0000000295814044</orcidid></search><sort><creationdate>20240710</creationdate><title>Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes</title><author>Kabra, Venkatesh ; Carter, Rachel ; Li, Mengya ; Fear, Conner ; Atkinson, Robert W. ; Love, Corey ; Mukherjee, Partha P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a242t-f7f2116e6fee58d642dbbbcc736200b24d3391d6c586d3673d17dd6e786083e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrical properties</topic><topic>Electrochemical cells</topic><topic>Electrodes</topic><topic>ENERGY STORAGE</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>Lithium</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabra, Venkatesh</creatorcontrib><creatorcontrib>Carter, Rachel</creatorcontrib><creatorcontrib>Li, Mengya</creatorcontrib><creatorcontrib>Fear, Conner</creatorcontrib><creatorcontrib>Atkinson, Robert W.</creatorcontrib><creatorcontrib>Love, Corey</creatorcontrib><creatorcontrib>Mukherjee, Partha P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabra, Venkatesh</au><au>Carter, Rachel</au><au>Li, Mengya</au><au>Fear, Conner</au><au>Atkinson, Robert W.</au><au>Love, Corey</au><au>Mukherjee, Partha P.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-10</date><risdate>2024</risdate><volume>16</volume><issue>27</issue><spage>34830</spage><epage>34839</epage><pages>34830-34839</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well understood. Herein, we combine an experimental plating-prone condition with robust mesoscale modeling to examine electrode pairings with capacities ranging from 2.5 to 6 mAh/cm2 and negative to positive (N/P) electrode areal capacity ratio from 0.9 to 1.8 without the need for extensive aging tests. Using both experimentation and a mesoscale model, we identify a shift from conventional high state-of-charge (SOC) type plating to high overpotential (OP) type plating as electrode thickness increases. These two plating modes have distinct morphologies, identified by optical microscopy and electrochemical signatures. We demonstrate that under operating conditions where these plating modes converge, a high propensity of plating exists, revealing the importance of predicting and avoiding this overlap for a given electrode pairing. Further, we identify that thicker electrodes, beyond a capacity of 3 mAh/cm2 or thickness &gt;75 μm, are prone to high OP, limiting negative electrode (NE) utilization and preventing cross-sectional oversizing the NE from mitigating plating. Here, it simply contributes to added mass and volume. The experimental thermal gradient and mesoscale model either combined or independently provide techniques capable of probing performance and safety implications of mild changes to electrode design features.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38941578</pmid><doi>10.1021/acsami.4c02516</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6583-1049</orcidid><orcidid>https://orcid.org/0000-0003-2581-3625</orcidid><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid><orcidid>https://orcid.org/0000-0002-9581-4044</orcidid><orcidid>https://orcid.org/0000000165831049</orcidid><orcidid>https://orcid.org/0000000325813625</orcidid><orcidid>https://orcid.org/0000000179007261</orcidid><orcidid>https://orcid.org/0000000295814044</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-07, Vol.16 (27), p.34830-34839
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_osti_scitechconnect_2397412
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Electrical properties
Electrochemical cells
Electrodes
ENERGY STORAGE
Energy, Environmental, and Catalysis Applications
Lithium
Thickness
title Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Plating%20Characteristics%20in%20High%20Areal%20Capacity%20Li-Ion%20Battery%20Electrodes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kabra,%20Venkatesh&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-07-10&rft.volume=16&rft.issue=27&rft.spage=34830&rft.epage=34839&rft.pages=34830-34839&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c02516&rft_dat=%3Cproquest_osti_%3E3073654409%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a242t-f7f2116e6fee58d642dbbbcc736200b24d3391d6c586d3673d17dd6e786083e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3073654409&rft_id=info:pmid/38941578&rfr_iscdi=true