Loading…
Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes
Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well...
Saved in:
Published in: | ACS applied materials & interfaces 2024-07, Vol.16 (27), p.34830-34839 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a242t-f7f2116e6fee58d642dbbbcc736200b24d3391d6c586d3673d17dd6e786083e03 |
container_end_page | 34839 |
container_issue | 27 |
container_start_page | 34830 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Kabra, Venkatesh Carter, Rachel Li, Mengya Fear, Conner Atkinson, Robert W. Love, Corey Mukherjee, Partha P. |
description | Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well understood. Herein, we combine an experimental plating-prone condition with robust mesoscale modeling to examine electrode pairings with capacities ranging from 2.5 to 6 mAh/cm2 and negative to positive (N/P) electrode areal capacity ratio from 0.9 to 1.8 without the need for extensive aging tests. Using both experimentation and a mesoscale model, we identify a shift from conventional high state-of-charge (SOC) type plating to high overpotential (OP) type plating as electrode thickness increases. These two plating modes have distinct morphologies, identified by optical microscopy and electrochemical signatures. We demonstrate that under operating conditions where these plating modes converge, a high propensity of plating exists, revealing the importance of predicting and avoiding this overlap for a given electrode pairing. Further, we identify that thicker electrodes, beyond a capacity of 3 mAh/cm2 or thickness >75 μm, are prone to high OP, limiting negative electrode (NE) utilization and preventing cross-sectional oversizing the NE from mitigating plating. Here, it simply contributes to added mass and volume. The experimental thermal gradient and mesoscale model either combined or independently provide techniques capable of probing performance and safety implications of mild changes to electrode design features. |
doi_str_mv | 10.1021/acsami.4c02516 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2397412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073654409</sourcerecordid><originalsourceid>FETCH-LOGICAL-a242t-f7f2116e6fee58d642dbbbcc736200b24d3391d6c586d3673d17dd6e786083e03</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqWwMiKLCSGl-BUnGUtVaKVKdIDZcmyndZVHsZ2h_x6jlG5M9w7nfvfTAeAeoylGBL9I5WVjp0whkmJ-Aca4YCzJSUouzztjI3Dj_R4hTglKr8GI5gXDaZaPwWZtw872DdzUMth2C-c76aQKxlkfrPLQtnBptzs4c0bWcC4PUtlwhGubrLoWvsoQ0SNc1EYF12njb8FVJWtv7k5zAr7eFp_zZbL-eF_NZ-tEEkZCUmUVwZgbXhmT5pozosuyVCqjnCBUEqYpLbDmKs25pjyjGmdac5PlHOXUIDoBj0NuF3sKH0sZtVNd28YigtAiY5hE6GmADq777o0PorFembqWrel6LyiK_1LGUBHR6YAq13nvTCUOzjbSHQVG4le1GFSLk-p48HDK7svG6DP-5zYCzwMQD8W-610bffyX9gOjdod6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073654409</pqid></control><display><type>article</type><title>Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kabra, Venkatesh ; Carter, Rachel ; Li, Mengya ; Fear, Conner ; Atkinson, Robert W. ; Love, Corey ; Mukherjee, Partha P.</creator><creatorcontrib>Kabra, Venkatesh ; Carter, Rachel ; Li, Mengya ; Fear, Conner ; Atkinson, Robert W. ; Love, Corey ; Mukherjee, Partha P. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well understood. Herein, we combine an experimental plating-prone condition with robust mesoscale modeling to examine electrode pairings with capacities ranging from 2.5 to 6 mAh/cm2 and negative to positive (N/P) electrode areal capacity ratio from 0.9 to 1.8 without the need for extensive aging tests. Using both experimentation and a mesoscale model, we identify a shift from conventional high state-of-charge (SOC) type plating to high overpotential (OP) type plating as electrode thickness increases. These two plating modes have distinct morphologies, identified by optical microscopy and electrochemical signatures. We demonstrate that under operating conditions where these plating modes converge, a high propensity of plating exists, revealing the importance of predicting and avoiding this overlap for a given electrode pairing. Further, we identify that thicker electrodes, beyond a capacity of 3 mAh/cm2 or thickness >75 μm, are prone to high OP, limiting negative electrode (NE) utilization and preventing cross-sectional oversizing the NE from mitigating plating. Here, it simply contributes to added mass and volume. The experimental thermal gradient and mesoscale model either combined or independently provide techniques capable of probing performance and safety implications of mild changes to electrode design features.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c02516</identifier><identifier>PMID: 38941578</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electrical properties ; Electrochemical cells ; Electrodes ; ENERGY STORAGE ; Energy, Environmental, and Catalysis Applications ; Lithium ; Thickness</subject><ispartof>ACS applied materials & interfaces, 2024-07, Vol.16 (27), p.34830-34839</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a242t-f7f2116e6fee58d642dbbbcc736200b24d3391d6c586d3673d17dd6e786083e03</cites><orcidid>0000-0001-6583-1049 ; 0000-0003-2581-3625 ; 0000-0001-7900-7261 ; 0000-0002-9581-4044 ; 0000000165831049 ; 0000000325813625 ; 0000000179007261 ; 0000000295814044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38941578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2397412$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kabra, Venkatesh</creatorcontrib><creatorcontrib>Carter, Rachel</creatorcontrib><creatorcontrib>Li, Mengya</creatorcontrib><creatorcontrib>Fear, Conner</creatorcontrib><creatorcontrib>Atkinson, Robert W.</creatorcontrib><creatorcontrib>Love, Corey</creatorcontrib><creatorcontrib>Mukherjee, Partha P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well understood. Herein, we combine an experimental plating-prone condition with robust mesoscale modeling to examine electrode pairings with capacities ranging from 2.5 to 6 mAh/cm2 and negative to positive (N/P) electrode areal capacity ratio from 0.9 to 1.8 without the need for extensive aging tests. Using both experimentation and a mesoscale model, we identify a shift from conventional high state-of-charge (SOC) type plating to high overpotential (OP) type plating as electrode thickness increases. These two plating modes have distinct morphologies, identified by optical microscopy and electrochemical signatures. We demonstrate that under operating conditions where these plating modes converge, a high propensity of plating exists, revealing the importance of predicting and avoiding this overlap for a given electrode pairing. Further, we identify that thicker electrodes, beyond a capacity of 3 mAh/cm2 or thickness >75 μm, are prone to high OP, limiting negative electrode (NE) utilization and preventing cross-sectional oversizing the NE from mitigating plating. Here, it simply contributes to added mass and volume. The experimental thermal gradient and mesoscale model either combined or independently provide techniques capable of probing performance and safety implications of mild changes to electrode design features.</description><subject>Electrical properties</subject><subject>Electrochemical cells</subject><subject>Electrodes</subject><subject>ENERGY STORAGE</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>Lithium</subject><subject>Thickness</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EoqWwMiKLCSGl-BUnGUtVaKVKdIDZcmyndZVHsZ2h_x6jlG5M9w7nfvfTAeAeoylGBL9I5WVjp0whkmJ-Aca4YCzJSUouzztjI3Dj_R4hTglKr8GI5gXDaZaPwWZtw872DdzUMth2C-c76aQKxlkfrPLQtnBptzs4c0bWcC4PUtlwhGubrLoWvsoQ0SNc1EYF12njb8FVJWtv7k5zAr7eFp_zZbL-eF_NZ-tEEkZCUmUVwZgbXhmT5pozosuyVCqjnCBUEqYpLbDmKs25pjyjGmdac5PlHOXUIDoBj0NuF3sKH0sZtVNd28YigtAiY5hE6GmADq777o0PorFembqWrel6LyiK_1LGUBHR6YAq13nvTCUOzjbSHQVG4le1GFSLk-p48HDK7svG6DP-5zYCzwMQD8W-610bffyX9gOjdod6</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Kabra, Venkatesh</creator><creator>Carter, Rachel</creator><creator>Li, Mengya</creator><creator>Fear, Conner</creator><creator>Atkinson, Robert W.</creator><creator>Love, Corey</creator><creator>Mukherjee, Partha P.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6583-1049</orcidid><orcidid>https://orcid.org/0000-0003-2581-3625</orcidid><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid><orcidid>https://orcid.org/0000-0002-9581-4044</orcidid><orcidid>https://orcid.org/0000000165831049</orcidid><orcidid>https://orcid.org/0000000325813625</orcidid><orcidid>https://orcid.org/0000000179007261</orcidid><orcidid>https://orcid.org/0000000295814044</orcidid></search><sort><creationdate>20240710</creationdate><title>Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes</title><author>Kabra, Venkatesh ; Carter, Rachel ; Li, Mengya ; Fear, Conner ; Atkinson, Robert W. ; Love, Corey ; Mukherjee, Partha P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a242t-f7f2116e6fee58d642dbbbcc736200b24d3391d6c586d3673d17dd6e786083e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrical properties</topic><topic>Electrochemical cells</topic><topic>Electrodes</topic><topic>ENERGY STORAGE</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>Lithium</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabra, Venkatesh</creatorcontrib><creatorcontrib>Carter, Rachel</creatorcontrib><creatorcontrib>Li, Mengya</creatorcontrib><creatorcontrib>Fear, Conner</creatorcontrib><creatorcontrib>Atkinson, Robert W.</creatorcontrib><creatorcontrib>Love, Corey</creatorcontrib><creatorcontrib>Mukherjee, Partha P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabra, Venkatesh</au><au>Carter, Rachel</au><au>Li, Mengya</au><au>Fear, Conner</au><au>Atkinson, Robert W.</au><au>Love, Corey</au><au>Mukherjee, Partha P.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-10</date><risdate>2024</risdate><volume>16</volume><issue>27</issue><spage>34830</spage><epage>34839</epage><pages>34830-34839</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well understood. Herein, we combine an experimental plating-prone condition with robust mesoscale modeling to examine electrode pairings with capacities ranging from 2.5 to 6 mAh/cm2 and negative to positive (N/P) electrode areal capacity ratio from 0.9 to 1.8 without the need for extensive aging tests. Using both experimentation and a mesoscale model, we identify a shift from conventional high state-of-charge (SOC) type plating to high overpotential (OP) type plating as electrode thickness increases. These two plating modes have distinct morphologies, identified by optical microscopy and electrochemical signatures. We demonstrate that under operating conditions where these plating modes converge, a high propensity of plating exists, revealing the importance of predicting and avoiding this overlap for a given electrode pairing. Further, we identify that thicker electrodes, beyond a capacity of 3 mAh/cm2 or thickness >75 μm, are prone to high OP, limiting negative electrode (NE) utilization and preventing cross-sectional oversizing the NE from mitigating plating. Here, it simply contributes to added mass and volume. The experimental thermal gradient and mesoscale model either combined or independently provide techniques capable of probing performance and safety implications of mild changes to electrode design features.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38941578</pmid><doi>10.1021/acsami.4c02516</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6583-1049</orcidid><orcidid>https://orcid.org/0000-0003-2581-3625</orcidid><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid><orcidid>https://orcid.org/0000-0002-9581-4044</orcidid><orcidid>https://orcid.org/0000000165831049</orcidid><orcidid>https://orcid.org/0000000325813625</orcidid><orcidid>https://orcid.org/0000000179007261</orcidid><orcidid>https://orcid.org/0000000295814044</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-07, Vol.16 (27), p.34830-34839 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_osti_scitechconnect_2397412 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Electrical properties Electrochemical cells Electrodes ENERGY STORAGE Energy, Environmental, and Catalysis Applications Lithium Thickness |
title | Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Plating%20Characteristics%20in%20High%20Areal%20Capacity%20Li-Ion%20Battery%20Electrodes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kabra,%20Venkatesh&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-07-10&rft.volume=16&rft.issue=27&rft.spage=34830&rft.epage=34839&rft.pages=34830-34839&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c02516&rft_dat=%3Cproquest_osti_%3E3073654409%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a242t-f7f2116e6fee58d642dbbbcc736200b24d3391d6c586d3673d17dd6e786083e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3073654409&rft_id=info:pmid/38941578&rfr_iscdi=true |