Loading…

Nanoparticle Diffusion in Miscible Polymer Nanocomposite Melts

X-ray photon correlation spectroscopy measurements were used to quantify the dynamics of bare and bimodal grafted silica nanoparticles mixed with PEO melts of different molecular weights. In dilute polymer nanocomposite (PNC) samples, we find diffusive NP behavior as described by the Stokes–Einstein...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2023-06, Vol.56 (12), p.4658-4668
Main Authors: Mendez, Nicholas F., Dhara, Deboleena, Zhang, Qingteng, Narayanan, Suresh, Schadler, Linda S., Müller, Alejandro J., Kumar, Sanat K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a319t-6c7f936ab9e4c85db5a04eb5cdc99923d8886ce043e05e96b80b341de38c920b3
cites cdi_FETCH-LOGICAL-a319t-6c7f936ab9e4c85db5a04eb5cdc99923d8886ce043e05e96b80b341de38c920b3
container_end_page 4668
container_issue 12
container_start_page 4658
container_title Macromolecules
container_volume 56
creator Mendez, Nicholas F.
Dhara, Deboleena
Zhang, Qingteng
Narayanan, Suresh
Schadler, Linda S.
Müller, Alejandro J.
Kumar, Sanat K.
description X-ray photon correlation spectroscopy measurements were used to quantify the dynamics of bare and bimodal grafted silica nanoparticles mixed with PEO melts of different molecular weights. In dilute polymer nanocomposite (PNC) samples, we find diffusive NP behavior as described by the Stokes–Einstein relationship so long as the adsorbed PEO polymer layer is taken into account in determining both the effective NP size and its role on composite viscosity. The size of this bound layer was found to be approximately 2R g, where R g is the chain radius of gyration. We also expanded our system to investigate how the dynamics of grafted NPs differ from bare NPs with an adsorbed layer. We showed that the dynamics again can be determined by an effective NP radius at a scale smaller than the effective interparticle spacing; however, at larger length scales, the morphology and grafting parameters play a major role in the system dynamics. These results allow us to quantify NP ordering driven by polymer crystallization. It has previously been speculated that behavior is controlled by the relative ratio of time scale of crystal growth and the diffusive time scale of the NPs, a Peclet number. When the former time scale is longer, then the NPs are expected to be segregated into the interlamellar amorphous zones, while the NPs are too slow to be reorganized in the opposite case. We show here that this conjecture is quantitatively correct and the demarcation in behavior occurs for Pe = 1. Thus, we provide a way to estimate a critical spherulite growth rate for any semicrystalline PNC, at which a given NP can be ordered. Together, the results of this study permit us to tunably design PNCs through directed dispersion of NPs in a polymer matrix.
doi_str_mv 10.1021/acs.macromol.3c00490
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2404853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c135343143</sourcerecordid><originalsourceid>FETCH-LOGICAL-a319t-6c7f936ab9e4c85db5a04eb5cdc99923d8886ce043e05e96b80b341de38c920b3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwDxgi9pRzbKf2goQKBaQWGGC2nIsjXCVxZbtD_z2uWlamO929d3r3EXJLYUahovcG42wwGPzg-xlDAK7gjEyoqKAUkolzMgGoeKkqNb8kVzFuACgVnE3Iw7sZ_daE5LC3xZPrul10fizcWKxdRNfk6afv94MNxUGKftj66JIt1rZP8ZpcdKaP9uZUp-R7-fy1eC1XHy9vi8dVaRhVqaxx3ilWm0ZZjlK0jTDAbSOwRaVUxVopZY0WOLMgrKobCQ3jtLVMoqpyPyV3x7s-JqdzrmTxB_04Wky64sClYFnEj6JMIsZgO70NbjBhrynoAyidQek_UPoEKtvgaDtsN34XxvzJ_5Zf3ttwKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoparticle Diffusion in Miscible Polymer Nanocomposite Melts</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Mendez, Nicholas F. ; Dhara, Deboleena ; Zhang, Qingteng ; Narayanan, Suresh ; Schadler, Linda S. ; Müller, Alejandro J. ; Kumar, Sanat K.</creator><creatorcontrib>Mendez, Nicholas F. ; Dhara, Deboleena ; Zhang, Qingteng ; Narayanan, Suresh ; Schadler, Linda S. ; Müller, Alejandro J. ; Kumar, Sanat K. ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>X-ray photon correlation spectroscopy measurements were used to quantify the dynamics of bare and bimodal grafted silica nanoparticles mixed with PEO melts of different molecular weights. In dilute polymer nanocomposite (PNC) samples, we find diffusive NP behavior as described by the Stokes–Einstein relationship so long as the adsorbed PEO polymer layer is taken into account in determining both the effective NP size and its role on composite viscosity. The size of this bound layer was found to be approximately 2R g, where R g is the chain radius of gyration. We also expanded our system to investigate how the dynamics of grafted NPs differ from bare NPs with an adsorbed layer. We showed that the dynamics again can be determined by an effective NP radius at a scale smaller than the effective interparticle spacing; however, at larger length scales, the morphology and grafting parameters play a major role in the system dynamics. These results allow us to quantify NP ordering driven by polymer crystallization. It has previously been speculated that behavior is controlled by the relative ratio of time scale of crystal growth and the diffusive time scale of the NPs, a Peclet number. When the former time scale is longer, then the NPs are expected to be segregated into the interlamellar amorphous zones, while the NPs are too slow to be reorganized in the opposite case. We show here that this conjecture is quantitatively correct and the demarcation in behavior occurs for Pe = 1. Thus, we provide a way to estimate a critical spherulite growth rate for any semicrystalline PNC, at which a given NP can be ordered. Together, the results of this study permit us to tunably design PNCs through directed dispersion of NPs in a polymer matrix.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.3c00490</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Diffusion ; Dynamics ; NANOSCIENCE AND NANOTECHNOLOGY ; Polymer melts ; Polymer nanocomposite ; Rheology ; Scattering ; XPCS</subject><ispartof>Macromolecules, 2023-06, Vol.56 (12), p.4658-4668</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a319t-6c7f936ab9e4c85db5a04eb5cdc99923d8886ce043e05e96b80b341de38c920b3</citedby><cites>FETCH-LOGICAL-a319t-6c7f936ab9e4c85db5a04eb5cdc99923d8886ce043e05e96b80b341de38c920b3</cites><orcidid>0000-0002-6690-2221 ; 0000-0001-7826-3618 ; 0000-0002-1600-2161 ; 0000-0002-2080-3041 ; 0000-0001-7009-7715 ; 0000-0002-6406-5247 ; 0000000220803041 ; 0000000264065247 ; 0000000178263618 ; 0000000266902221 ; 0000000216002161 ; 0000000170097715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2404853$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mendez, Nicholas F.</creatorcontrib><creatorcontrib>Dhara, Deboleena</creatorcontrib><creatorcontrib>Zhang, Qingteng</creatorcontrib><creatorcontrib>Narayanan, Suresh</creatorcontrib><creatorcontrib>Schadler, Linda S.</creatorcontrib><creatorcontrib>Müller, Alejandro J.</creatorcontrib><creatorcontrib>Kumar, Sanat K.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Nanoparticle Diffusion in Miscible Polymer Nanocomposite Melts</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>X-ray photon correlation spectroscopy measurements were used to quantify the dynamics of bare and bimodal grafted silica nanoparticles mixed with PEO melts of different molecular weights. In dilute polymer nanocomposite (PNC) samples, we find diffusive NP behavior as described by the Stokes–Einstein relationship so long as the adsorbed PEO polymer layer is taken into account in determining both the effective NP size and its role on composite viscosity. The size of this bound layer was found to be approximately 2R g, where R g is the chain radius of gyration. We also expanded our system to investigate how the dynamics of grafted NPs differ from bare NPs with an adsorbed layer. We showed that the dynamics again can be determined by an effective NP radius at a scale smaller than the effective interparticle spacing; however, at larger length scales, the morphology and grafting parameters play a major role in the system dynamics. These results allow us to quantify NP ordering driven by polymer crystallization. It has previously been speculated that behavior is controlled by the relative ratio of time scale of crystal growth and the diffusive time scale of the NPs, a Peclet number. When the former time scale is longer, then the NPs are expected to be segregated into the interlamellar amorphous zones, while the NPs are too slow to be reorganized in the opposite case. We show here that this conjecture is quantitatively correct and the demarcation in behavior occurs for Pe = 1. Thus, we provide a way to estimate a critical spherulite growth rate for any semicrystalline PNC, at which a given NP can be ordered. Together, the results of this study permit us to tunably design PNCs through directed dispersion of NPs in a polymer matrix.</description><subject>Diffusion</subject><subject>Dynamics</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Polymer melts</subject><subject>Polymer nanocomposite</subject><subject>Rheology</subject><subject>Scattering</subject><subject>XPCS</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwDxgi9pRzbKf2goQKBaQWGGC2nIsjXCVxZbtD_z2uWlamO929d3r3EXJLYUahovcG42wwGPzg-xlDAK7gjEyoqKAUkolzMgGoeKkqNb8kVzFuACgVnE3Iw7sZ_daE5LC3xZPrul10fizcWKxdRNfk6afv94MNxUGKftj66JIt1rZP8ZpcdKaP9uZUp-R7-fy1eC1XHy9vi8dVaRhVqaxx3ilWm0ZZjlK0jTDAbSOwRaVUxVopZY0WOLMgrKobCQ3jtLVMoqpyPyV3x7s-JqdzrmTxB_04Wky64sClYFnEj6JMIsZgO70NbjBhrynoAyidQek_UPoEKtvgaDtsN34XxvzJ_5Zf3ttwKw</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>Mendez, Nicholas F.</creator><creator>Dhara, Deboleena</creator><creator>Zhang, Qingteng</creator><creator>Narayanan, Suresh</creator><creator>Schadler, Linda S.</creator><creator>Müller, Alejandro J.</creator><creator>Kumar, Sanat K.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6690-2221</orcidid><orcidid>https://orcid.org/0000-0001-7826-3618</orcidid><orcidid>https://orcid.org/0000-0002-1600-2161</orcidid><orcidid>https://orcid.org/0000-0002-2080-3041</orcidid><orcidid>https://orcid.org/0000-0001-7009-7715</orcidid><orcidid>https://orcid.org/0000-0002-6406-5247</orcidid><orcidid>https://orcid.org/0000000220803041</orcidid><orcidid>https://orcid.org/0000000264065247</orcidid><orcidid>https://orcid.org/0000000178263618</orcidid><orcidid>https://orcid.org/0000000266902221</orcidid><orcidid>https://orcid.org/0000000216002161</orcidid><orcidid>https://orcid.org/0000000170097715</orcidid></search><sort><creationdate>20230627</creationdate><title>Nanoparticle Diffusion in Miscible Polymer Nanocomposite Melts</title><author>Mendez, Nicholas F. ; Dhara, Deboleena ; Zhang, Qingteng ; Narayanan, Suresh ; Schadler, Linda S. ; Müller, Alejandro J. ; Kumar, Sanat K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a319t-6c7f936ab9e4c85db5a04eb5cdc99923d8886ce043e05e96b80b341de38c920b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diffusion</topic><topic>Dynamics</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Polymer melts</topic><topic>Polymer nanocomposite</topic><topic>Rheology</topic><topic>Scattering</topic><topic>XPCS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendez, Nicholas F.</creatorcontrib><creatorcontrib>Dhara, Deboleena</creatorcontrib><creatorcontrib>Zhang, Qingteng</creatorcontrib><creatorcontrib>Narayanan, Suresh</creatorcontrib><creatorcontrib>Schadler, Linda S.</creatorcontrib><creatorcontrib>Müller, Alejandro J.</creatorcontrib><creatorcontrib>Kumar, Sanat K.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendez, Nicholas F.</au><au>Dhara, Deboleena</au><au>Zhang, Qingteng</au><au>Narayanan, Suresh</au><au>Schadler, Linda S.</au><au>Müller, Alejandro J.</au><au>Kumar, Sanat K.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle Diffusion in Miscible Polymer Nanocomposite Melts</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2023-06-27</date><risdate>2023</risdate><volume>56</volume><issue>12</issue><spage>4658</spage><epage>4668</epage><pages>4658-4668</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>X-ray photon correlation spectroscopy measurements were used to quantify the dynamics of bare and bimodal grafted silica nanoparticles mixed with PEO melts of different molecular weights. In dilute polymer nanocomposite (PNC) samples, we find diffusive NP behavior as described by the Stokes–Einstein relationship so long as the adsorbed PEO polymer layer is taken into account in determining both the effective NP size and its role on composite viscosity. The size of this bound layer was found to be approximately 2R g, where R g is the chain radius of gyration. We also expanded our system to investigate how the dynamics of grafted NPs differ from bare NPs with an adsorbed layer. We showed that the dynamics again can be determined by an effective NP radius at a scale smaller than the effective interparticle spacing; however, at larger length scales, the morphology and grafting parameters play a major role in the system dynamics. These results allow us to quantify NP ordering driven by polymer crystallization. It has previously been speculated that behavior is controlled by the relative ratio of time scale of crystal growth and the diffusive time scale of the NPs, a Peclet number. When the former time scale is longer, then the NPs are expected to be segregated into the interlamellar amorphous zones, while the NPs are too slow to be reorganized in the opposite case. We show here that this conjecture is quantitatively correct and the demarcation in behavior occurs for Pe = 1. Thus, we provide a way to estimate a critical spherulite growth rate for any semicrystalline PNC, at which a given NP can be ordered. Together, the results of this study permit us to tunably design PNCs through directed dispersion of NPs in a polymer matrix.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.3c00490</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6690-2221</orcidid><orcidid>https://orcid.org/0000-0001-7826-3618</orcidid><orcidid>https://orcid.org/0000-0002-1600-2161</orcidid><orcidid>https://orcid.org/0000-0002-2080-3041</orcidid><orcidid>https://orcid.org/0000-0001-7009-7715</orcidid><orcidid>https://orcid.org/0000-0002-6406-5247</orcidid><orcidid>https://orcid.org/0000000220803041</orcidid><orcidid>https://orcid.org/0000000264065247</orcidid><orcidid>https://orcid.org/0000000178263618</orcidid><orcidid>https://orcid.org/0000000266902221</orcidid><orcidid>https://orcid.org/0000000216002161</orcidid><orcidid>https://orcid.org/0000000170097715</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2023-06, Vol.56 (12), p.4658-4668
issn 0024-9297
1520-5835
language eng
recordid cdi_osti_scitechconnect_2404853
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Diffusion
Dynamics
NANOSCIENCE AND NANOTECHNOLOGY
Polymer melts
Polymer nanocomposite
Rheology
Scattering
XPCS
title Nanoparticle Diffusion in Miscible Polymer Nanocomposite Melts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle%20Diffusion%20in%20Miscible%20Polymer%20Nanocomposite%20Melts&rft.jtitle=Macromolecules&rft.au=Mendez,%20Nicholas%20F.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-06-27&rft.volume=56&rft.issue=12&rft.spage=4658&rft.epage=4668&rft.pages=4658-4668&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.3c00490&rft_dat=%3Cacs_osti_%3Ec135343143%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a319t-6c7f936ab9e4c85db5a04eb5cdc99923d8886ce043e05e96b80b341de38c920b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true