Loading…
Dual‐Responsive Turn‐On T1 Imaging‐Guided Mild Photothermia for Precise Apoptotic Cancer Therapy
Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non‐...
Saved in:
Published in: | Advanced healthcare materials 2023-11, Vol.12 (28), p.e2301437-e2301437 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | e2301437 |
container_issue | 28 |
container_start_page | e2301437 |
container_title | Advanced healthcare materials |
container_volume | 12 |
creator | Song, Sijie Wang, Qi Xie, Jiangao Dai, Junduan Ouyang, Dilan Huang, Guoming Guo, Yuheng Chen, Chen Wu, Mengnan Huang, Tingjing Ruan, Jingwen Cheng, Xiaofeng Lin, Xucong He, Yu Rozhkova, Elena A Chen, Zhaowei Yang, Huanghao |
description | Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non‐specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual‐stimulation activated turn‐on T1 imaging‐based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)‐mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3O4 NPs) and a paramagnetic enhancer (Gd‐DOTA complexes) are connected via the N6‐methyladenine (m6A)‐caged, Zn2+‐dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd‐DOTA complex‐labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity‐associated protein (FTO) specifically demethylates the m6A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd‐DOTA complex‐labeled oligonucleotides. The restored T1 signal from the liberated Gd‐DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia‐mediated precise apoptotic cancer therapy. |
doi_str_mv | 10.1002/adhm.202301437 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2404876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830669313</sourcerecordid><originalsourceid>FETCH-LOGICAL-o243t-5ef860cc93e1a23fb93db6c0a86316bf76ee5140ccaff792fca0202c2cfe81493</originalsourceid><addsrcrecordid>eNpdkM1Kw0AUhYMoWGq3rgfduEmdv0ySZalaC5UWieswndxppiQzMZMI7nwEn9EncUBx4d3cv48D50TRJcFzgjG9lVXdzimmDBPO0pNoQklOYyqS_PRv5vg8mnl_xKFEQkRGJpG-G2Xz9fH5DL5z1ps3QMXY23DZWlQQtG7lwdhD2FejqaBCT6ap0K52gxtq6FsjkXY92vWgjAe06FwXPkahpbQKelQESHbvF9GZlo2H2W-fRi8P98XyMd5sV-vlYhM7ytkQJ6AzgZXKGRBJmd7nrNoLhWUmGBF7nQqAhPBASK3TnGolcTCtqNKQEZ6zaXT1o-v8YEqvzACqVs5aUENJOeZZKgJ08wN1vXsdwQ9la7yCppEW3OhLmjEsRM4IC-j1P_ToQjzBQqCyjPMQMGffX512bQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888446594</pqid></control><display><type>article</type><title>Dual‐Responsive Turn‐On T1 Imaging‐Guided Mild Photothermia for Precise Apoptotic Cancer Therapy</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Song, Sijie ; Wang, Qi ; Xie, Jiangao ; Dai, Junduan ; Ouyang, Dilan ; Huang, Guoming ; Guo, Yuheng ; Chen, Chen ; Wu, Mengnan ; Huang, Tingjing ; Ruan, Jingwen ; Cheng, Xiaofeng ; Lin, Xucong ; He, Yu ; Rozhkova, Elena A ; Chen, Zhaowei ; Yang, Huanghao</creator><creatorcontrib>Song, Sijie ; Wang, Qi ; Xie, Jiangao ; Dai, Junduan ; Ouyang, Dilan ; Huang, Guoming ; Guo, Yuheng ; Chen, Chen ; Wu, Mengnan ; Huang, Tingjing ; Ruan, Jingwen ; Cheng, Xiaofeng ; Lin, Xucong ; He, Yu ; Rozhkova, Elena A ; Chen, Zhaowei ; Yang, Huanghao ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non‐specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual‐stimulation activated turn‐on T1 imaging‐based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)‐mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3O4 NPs) and a paramagnetic enhancer (Gd‐DOTA complexes) are connected via the N6‐methyladenine (m6A)‐caged, Zn2+‐dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd‐DOTA complex‐labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity‐associated protein (FTO) specifically demethylates the m6A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd‐DOTA complex‐labeled oligonucleotides. The restored T1 signal from the liberated Gd‐DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia‐mediated precise apoptotic cancer therapy.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202301437</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Antisense oligonucleotides ; Apoptosis ; Body fat ; Cancer ; Cancer therapies ; Deoxyribozymes ; DNAzyme ; Gadolinium ; Gene therapy ; Heat shock proteins ; Hsp70 protein ; Hyperthermia ; Iron oxides ; Laser radiation ; MRI ; Nanoparticles ; Oligonucleotides ; Photothermal therapy ; Signal transduction ; Substrates ; Therapy ; Tumor cells ; Tumors ; Zinc</subject><ispartof>Advanced healthcare materials, 2023-11, Vol.12 (28), p.e2301437-e2301437</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000184988228 ; 0000000190075513 ; 0000000158940909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2404876$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Sijie</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Xie, Jiangao</creatorcontrib><creatorcontrib>Dai, Junduan</creatorcontrib><creatorcontrib>Ouyang, Dilan</creatorcontrib><creatorcontrib>Huang, Guoming</creatorcontrib><creatorcontrib>Guo, Yuheng</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wu, Mengnan</creatorcontrib><creatorcontrib>Huang, Tingjing</creatorcontrib><creatorcontrib>Ruan, Jingwen</creatorcontrib><creatorcontrib>Cheng, Xiaofeng</creatorcontrib><creatorcontrib>Lin, Xucong</creatorcontrib><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Rozhkova, Elena A</creatorcontrib><creatorcontrib>Chen, Zhaowei</creatorcontrib><creatorcontrib>Yang, Huanghao</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Dual‐Responsive Turn‐On T1 Imaging‐Guided Mild Photothermia for Precise Apoptotic Cancer Therapy</title><title>Advanced healthcare materials</title><description>Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non‐specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual‐stimulation activated turn‐on T1 imaging‐based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)‐mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3O4 NPs) and a paramagnetic enhancer (Gd‐DOTA complexes) are connected via the N6‐methyladenine (m6A)‐caged, Zn2+‐dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd‐DOTA complex‐labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity‐associated protein (FTO) specifically demethylates the m6A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd‐DOTA complex‐labeled oligonucleotides. The restored T1 signal from the liberated Gd‐DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia‐mediated precise apoptotic cancer therapy.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Antisense oligonucleotides</subject><subject>Apoptosis</subject><subject>Body fat</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Deoxyribozymes</subject><subject>DNAzyme</subject><subject>Gadolinium</subject><subject>Gene therapy</subject><subject>Heat shock proteins</subject><subject>Hsp70 protein</subject><subject>Hyperthermia</subject><subject>Iron oxides</subject><subject>Laser radiation</subject><subject>MRI</subject><subject>Nanoparticles</subject><subject>Oligonucleotides</subject><subject>Photothermal therapy</subject><subject>Signal transduction</subject><subject>Substrates</subject><subject>Therapy</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Zinc</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkM1Kw0AUhYMoWGq3rgfduEmdv0ySZalaC5UWieswndxppiQzMZMI7nwEn9EncUBx4d3cv48D50TRJcFzgjG9lVXdzimmDBPO0pNoQklOYyqS_PRv5vg8mnl_xKFEQkRGJpG-G2Xz9fH5DL5z1ps3QMXY23DZWlQQtG7lwdhD2FejqaBCT6ap0K52gxtq6FsjkXY92vWgjAe06FwXPkahpbQKelQESHbvF9GZlo2H2W-fRi8P98XyMd5sV-vlYhM7ytkQJ6AzgZXKGRBJmd7nrNoLhWUmGBF7nQqAhPBASK3TnGolcTCtqNKQEZ6zaXT1o-v8YEqvzACqVs5aUENJOeZZKgJ08wN1vXsdwQ9la7yCppEW3OhLmjEsRM4IC-j1P_ToQjzBQqCyjPMQMGffX512bQ</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>Song, Sijie</creator><creator>Wang, Qi</creator><creator>Xie, Jiangao</creator><creator>Dai, Junduan</creator><creator>Ouyang, Dilan</creator><creator>Huang, Guoming</creator><creator>Guo, Yuheng</creator><creator>Chen, Chen</creator><creator>Wu, Mengnan</creator><creator>Huang, Tingjing</creator><creator>Ruan, Jingwen</creator><creator>Cheng, Xiaofeng</creator><creator>Lin, Xucong</creator><creator>He, Yu</creator><creator>Rozhkova, Elena A</creator><creator>Chen, Zhaowei</creator><creator>Yang, Huanghao</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000184988228</orcidid><orcidid>https://orcid.org/0000000190075513</orcidid><orcidid>https://orcid.org/0000000158940909</orcidid></search><sort><creationdate>20231110</creationdate><title>Dual‐Responsive Turn‐On T1 Imaging‐Guided Mild Photothermia for Precise Apoptotic Cancer Therapy</title><author>Song, Sijie ; Wang, Qi ; Xie, Jiangao ; Dai, Junduan ; Ouyang, Dilan ; Huang, Guoming ; Guo, Yuheng ; Chen, Chen ; Wu, Mengnan ; Huang, Tingjing ; Ruan, Jingwen ; Cheng, Xiaofeng ; Lin, Xucong ; He, Yu ; Rozhkova, Elena A ; Chen, Zhaowei ; Yang, Huanghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o243t-5ef860cc93e1a23fb93db6c0a86316bf76ee5140ccaff792fca0202c2cfe81493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Antisense oligonucleotides</topic><topic>Apoptosis</topic><topic>Body fat</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Deoxyribozymes</topic><topic>DNAzyme</topic><topic>Gadolinium</topic><topic>Gene therapy</topic><topic>Heat shock proteins</topic><topic>Hsp70 protein</topic><topic>Hyperthermia</topic><topic>Iron oxides</topic><topic>Laser radiation</topic><topic>MRI</topic><topic>Nanoparticles</topic><topic>Oligonucleotides</topic><topic>Photothermal therapy</topic><topic>Signal transduction</topic><topic>Substrates</topic><topic>Therapy</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Sijie</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Xie, Jiangao</creatorcontrib><creatorcontrib>Dai, Junduan</creatorcontrib><creatorcontrib>Ouyang, Dilan</creatorcontrib><creatorcontrib>Huang, Guoming</creatorcontrib><creatorcontrib>Guo, Yuheng</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wu, Mengnan</creatorcontrib><creatorcontrib>Huang, Tingjing</creatorcontrib><creatorcontrib>Ruan, Jingwen</creatorcontrib><creatorcontrib>Cheng, Xiaofeng</creatorcontrib><creatorcontrib>Lin, Xucong</creatorcontrib><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Rozhkova, Elena A</creatorcontrib><creatorcontrib>Chen, Zhaowei</creatorcontrib><creatorcontrib>Yang, Huanghao</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Sijie</au><au>Wang, Qi</au><au>Xie, Jiangao</au><au>Dai, Junduan</au><au>Ouyang, Dilan</au><au>Huang, Guoming</au><au>Guo, Yuheng</au><au>Chen, Chen</au><au>Wu, Mengnan</au><au>Huang, Tingjing</au><au>Ruan, Jingwen</au><au>Cheng, Xiaofeng</au><au>Lin, Xucong</au><au>He, Yu</au><au>Rozhkova, Elena A</au><au>Chen, Zhaowei</au><au>Yang, Huanghao</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual‐Responsive Turn‐On T1 Imaging‐Guided Mild Photothermia for Precise Apoptotic Cancer Therapy</atitle><jtitle>Advanced healthcare materials</jtitle><date>2023-11-10</date><risdate>2023</risdate><volume>12</volume><issue>28</issue><spage>e2301437</spage><epage>e2301437</epage><pages>e2301437-e2301437</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non‐specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual‐stimulation activated turn‐on T1 imaging‐based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)‐mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3O4 NPs) and a paramagnetic enhancer (Gd‐DOTA complexes) are connected via the N6‐methyladenine (m6A)‐caged, Zn2+‐dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd‐DOTA complex‐labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity‐associated protein (FTO) specifically demethylates the m6A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd‐DOTA complex‐labeled oligonucleotides. The restored T1 signal from the liberated Gd‐DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia‐mediated precise apoptotic cancer therapy.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adhm.202301437</doi><orcidid>https://orcid.org/0000000184988228</orcidid><orcidid>https://orcid.org/0000000190075513</orcidid><orcidid>https://orcid.org/0000000158940909</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2023-11, Vol.12 (28), p.e2301437-e2301437 |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_osti_scitechconnect_2404876 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Antisense oligonucleotides Apoptosis Body fat Cancer Cancer therapies Deoxyribozymes DNAzyme Gadolinium Gene therapy Heat shock proteins Hsp70 protein Hyperthermia Iron oxides Laser radiation MRI Nanoparticles Oligonucleotides Photothermal therapy Signal transduction Substrates Therapy Tumor cells Tumors Zinc |
title | Dual‐Responsive Turn‐On T1 Imaging‐Guided Mild Photothermia for Precise Apoptotic Cancer Therapy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%E2%80%90Responsive%20Turn%E2%80%90On%20T1%20Imaging%E2%80%90Guided%20Mild%20Photothermia%20for%20Precise%20Apoptotic%20Cancer%20Therapy&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Song,%20Sijie&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-11-10&rft.volume=12&rft.issue=28&rft.spage=e2301437&rft.epage=e2301437&rft.pages=e2301437-e2301437&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202301437&rft_dat=%3Cproquest_osti_%3E2830669313%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o243t-5ef860cc93e1a23fb93db6c0a86316bf76ee5140ccaff792fca0202c2cfe81493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888446594&rft_id=info:pmid/&rfr_iscdi=true |