Loading…

Dual‐Responsive Turn‐On T1 Imaging‐Guided Mild Photothermia for Precise Apoptotic Cancer Therapy

Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non‐...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials 2023-11, Vol.12 (28), p.e2301437-e2301437
Main Authors: Song, Sijie, Wang, Qi, Xie, Jiangao, Dai, Junduan, Ouyang, Dilan, Huang, Guoming, Guo, Yuheng, Chen, Chen, Wu, Mengnan, Huang, Tingjing, Ruan, Jingwen, Cheng, Xiaofeng, Lin, Xucong, He, Yu, Rozhkova, Elena A, Chen, Zhaowei, Yang, Huanghao
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page e2301437
container_issue 28
container_start_page e2301437
container_title Advanced healthcare materials
container_volume 12
creator Song, Sijie
Wang, Qi
Xie, Jiangao
Dai, Junduan
Ouyang, Dilan
Huang, Guoming
Guo, Yuheng
Chen, Chen
Wu, Mengnan
Huang, Tingjing
Ruan, Jingwen
Cheng, Xiaofeng
Lin, Xucong
He, Yu
Rozhkova, Elena A
Chen, Zhaowei
Yang, Huanghao
description Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non‐specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual‐stimulation activated turn‐on T1 imaging‐based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)‐mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3O4 NPs) and a paramagnetic enhancer (Gd‐DOTA complexes) are connected via the N6‐methyladenine (m6A)‐caged, Zn2+‐dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd‐DOTA complex‐labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity‐associated protein (FTO) specifically demethylates the m6A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd‐DOTA complex‐labeled oligonucleotides. The restored T1 signal from the liberated Gd‐DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia‐mediated precise apoptotic cancer therapy.
doi_str_mv 10.1002/adhm.202301437
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2404876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830669313</sourcerecordid><originalsourceid>FETCH-LOGICAL-o243t-5ef860cc93e1a23fb93db6c0a86316bf76ee5140ccaff792fca0202c2cfe81493</originalsourceid><addsrcrecordid>eNpdkM1Kw0AUhYMoWGq3rgfduEmdv0ySZalaC5UWieswndxppiQzMZMI7nwEn9EncUBx4d3cv48D50TRJcFzgjG9lVXdzimmDBPO0pNoQklOYyqS_PRv5vg8mnl_xKFEQkRGJpG-G2Xz9fH5DL5z1ps3QMXY23DZWlQQtG7lwdhD2FejqaBCT6ap0K52gxtq6FsjkXY92vWgjAe06FwXPkahpbQKelQESHbvF9GZlo2H2W-fRi8P98XyMd5sV-vlYhM7ytkQJ6AzgZXKGRBJmd7nrNoLhWUmGBF7nQqAhPBASK3TnGolcTCtqNKQEZ6zaXT1o-v8YEqvzACqVs5aUENJOeZZKgJ08wN1vXsdwQ9la7yCppEW3OhLmjEsRM4IC-j1P_ToQjzBQqCyjPMQMGffX512bQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888446594</pqid></control><display><type>article</type><title>Dual‐Responsive Turn‐On T1 Imaging‐Guided Mild Photothermia for Precise Apoptotic Cancer Therapy</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Song, Sijie ; Wang, Qi ; Xie, Jiangao ; Dai, Junduan ; Ouyang, Dilan ; Huang, Guoming ; Guo, Yuheng ; Chen, Chen ; Wu, Mengnan ; Huang, Tingjing ; Ruan, Jingwen ; Cheng, Xiaofeng ; Lin, Xucong ; He, Yu ; Rozhkova, Elena A ; Chen, Zhaowei ; Yang, Huanghao</creator><creatorcontrib>Song, Sijie ; Wang, Qi ; Xie, Jiangao ; Dai, Junduan ; Ouyang, Dilan ; Huang, Guoming ; Guo, Yuheng ; Chen, Chen ; Wu, Mengnan ; Huang, Tingjing ; Ruan, Jingwen ; Cheng, Xiaofeng ; Lin, Xucong ; He, Yu ; Rozhkova, Elena A ; Chen, Zhaowei ; Yang, Huanghao ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non‐specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual‐stimulation activated turn‐on T1 imaging‐based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)‐mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3O4 NPs) and a paramagnetic enhancer (Gd‐DOTA complexes) are connected via the N6‐methyladenine (m6A)‐caged, Zn2+‐dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd‐DOTA complex‐labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity‐associated protein (FTO) specifically demethylates the m6A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd‐DOTA complex‐labeled oligonucleotides. The restored T1 signal from the liberated Gd‐DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia‐mediated precise apoptotic cancer therapy.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202301437</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Antisense oligonucleotides ; Apoptosis ; Body fat ; Cancer ; Cancer therapies ; Deoxyribozymes ; DNAzyme ; Gadolinium ; Gene therapy ; Heat shock proteins ; Hsp70 protein ; Hyperthermia ; Iron oxides ; Laser radiation ; MRI ; Nanoparticles ; Oligonucleotides ; Photothermal therapy ; Signal transduction ; Substrates ; Therapy ; Tumor cells ; Tumors ; Zinc</subject><ispartof>Advanced healthcare materials, 2023-11, Vol.12 (28), p.e2301437-e2301437</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000184988228 ; 0000000190075513 ; 0000000158940909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2404876$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Sijie</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Xie, Jiangao</creatorcontrib><creatorcontrib>Dai, Junduan</creatorcontrib><creatorcontrib>Ouyang, Dilan</creatorcontrib><creatorcontrib>Huang, Guoming</creatorcontrib><creatorcontrib>Guo, Yuheng</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wu, Mengnan</creatorcontrib><creatorcontrib>Huang, Tingjing</creatorcontrib><creatorcontrib>Ruan, Jingwen</creatorcontrib><creatorcontrib>Cheng, Xiaofeng</creatorcontrib><creatorcontrib>Lin, Xucong</creatorcontrib><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Rozhkova, Elena A</creatorcontrib><creatorcontrib>Chen, Zhaowei</creatorcontrib><creatorcontrib>Yang, Huanghao</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Dual‐Responsive Turn‐On T1 Imaging‐Guided Mild Photothermia for Precise Apoptotic Cancer Therapy</title><title>Advanced healthcare materials</title><description>Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non‐specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual‐stimulation activated turn‐on T1 imaging‐based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)‐mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3O4 NPs) and a paramagnetic enhancer (Gd‐DOTA complexes) are connected via the N6‐methyladenine (m6A)‐caged, Zn2+‐dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd‐DOTA complex‐labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity‐associated protein (FTO) specifically demethylates the m6A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd‐DOTA complex‐labeled oligonucleotides. The restored T1 signal from the liberated Gd‐DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia‐mediated precise apoptotic cancer therapy.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Antisense oligonucleotides</subject><subject>Apoptosis</subject><subject>Body fat</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Deoxyribozymes</subject><subject>DNAzyme</subject><subject>Gadolinium</subject><subject>Gene therapy</subject><subject>Heat shock proteins</subject><subject>Hsp70 protein</subject><subject>Hyperthermia</subject><subject>Iron oxides</subject><subject>Laser radiation</subject><subject>MRI</subject><subject>Nanoparticles</subject><subject>Oligonucleotides</subject><subject>Photothermal therapy</subject><subject>Signal transduction</subject><subject>Substrates</subject><subject>Therapy</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Zinc</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkM1Kw0AUhYMoWGq3rgfduEmdv0ySZalaC5UWieswndxppiQzMZMI7nwEn9EncUBx4d3cv48D50TRJcFzgjG9lVXdzimmDBPO0pNoQklOYyqS_PRv5vg8mnl_xKFEQkRGJpG-G2Xz9fH5DL5z1ps3QMXY23DZWlQQtG7lwdhD2FejqaBCT6ap0K52gxtq6FsjkXY92vWgjAe06FwXPkahpbQKelQESHbvF9GZlo2H2W-fRi8P98XyMd5sV-vlYhM7ytkQJ6AzgZXKGRBJmd7nrNoLhWUmGBF7nQqAhPBASK3TnGolcTCtqNKQEZ6zaXT1o-v8YEqvzACqVs5aUENJOeZZKgJ08wN1vXsdwQ9la7yCppEW3OhLmjEsRM4IC-j1P_ToQjzBQqCyjPMQMGffX512bQ</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>Song, Sijie</creator><creator>Wang, Qi</creator><creator>Xie, Jiangao</creator><creator>Dai, Junduan</creator><creator>Ouyang, Dilan</creator><creator>Huang, Guoming</creator><creator>Guo, Yuheng</creator><creator>Chen, Chen</creator><creator>Wu, Mengnan</creator><creator>Huang, Tingjing</creator><creator>Ruan, Jingwen</creator><creator>Cheng, Xiaofeng</creator><creator>Lin, Xucong</creator><creator>He, Yu</creator><creator>Rozhkova, Elena A</creator><creator>Chen, Zhaowei</creator><creator>Yang, Huanghao</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000184988228</orcidid><orcidid>https://orcid.org/0000000190075513</orcidid><orcidid>https://orcid.org/0000000158940909</orcidid></search><sort><creationdate>20231110</creationdate><title>Dual‐Responsive Turn‐On T1 Imaging‐Guided Mild Photothermia for Precise Apoptotic Cancer Therapy</title><author>Song, Sijie ; Wang, Qi ; Xie, Jiangao ; Dai, Junduan ; Ouyang, Dilan ; Huang, Guoming ; Guo, Yuheng ; Chen, Chen ; Wu, Mengnan ; Huang, Tingjing ; Ruan, Jingwen ; Cheng, Xiaofeng ; Lin, Xucong ; He, Yu ; Rozhkova, Elena A ; Chen, Zhaowei ; Yang, Huanghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o243t-5ef860cc93e1a23fb93db6c0a86316bf76ee5140ccaff792fca0202c2cfe81493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Antisense oligonucleotides</topic><topic>Apoptosis</topic><topic>Body fat</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Deoxyribozymes</topic><topic>DNAzyme</topic><topic>Gadolinium</topic><topic>Gene therapy</topic><topic>Heat shock proteins</topic><topic>Hsp70 protein</topic><topic>Hyperthermia</topic><topic>Iron oxides</topic><topic>Laser radiation</topic><topic>MRI</topic><topic>Nanoparticles</topic><topic>Oligonucleotides</topic><topic>Photothermal therapy</topic><topic>Signal transduction</topic><topic>Substrates</topic><topic>Therapy</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Sijie</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Xie, Jiangao</creatorcontrib><creatorcontrib>Dai, Junduan</creatorcontrib><creatorcontrib>Ouyang, Dilan</creatorcontrib><creatorcontrib>Huang, Guoming</creatorcontrib><creatorcontrib>Guo, Yuheng</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wu, Mengnan</creatorcontrib><creatorcontrib>Huang, Tingjing</creatorcontrib><creatorcontrib>Ruan, Jingwen</creatorcontrib><creatorcontrib>Cheng, Xiaofeng</creatorcontrib><creatorcontrib>Lin, Xucong</creatorcontrib><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Rozhkova, Elena A</creatorcontrib><creatorcontrib>Chen, Zhaowei</creatorcontrib><creatorcontrib>Yang, Huanghao</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Sijie</au><au>Wang, Qi</au><au>Xie, Jiangao</au><au>Dai, Junduan</au><au>Ouyang, Dilan</au><au>Huang, Guoming</au><au>Guo, Yuheng</au><au>Chen, Chen</au><au>Wu, Mengnan</au><au>Huang, Tingjing</au><au>Ruan, Jingwen</au><au>Cheng, Xiaofeng</au><au>Lin, Xucong</au><au>He, Yu</au><au>Rozhkova, Elena A</au><au>Chen, Zhaowei</au><au>Yang, Huanghao</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual‐Responsive Turn‐On T1 Imaging‐Guided Mild Photothermia for Precise Apoptotic Cancer Therapy</atitle><jtitle>Advanced healthcare materials</jtitle><date>2023-11-10</date><risdate>2023</risdate><volume>12</volume><issue>28</issue><spage>e2301437</spage><epage>e2301437</epage><pages>e2301437-e2301437</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non‐specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual‐stimulation activated turn‐on T1 imaging‐based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)‐mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3O4 NPs) and a paramagnetic enhancer (Gd‐DOTA complexes) are connected via the N6‐methyladenine (m6A)‐caged, Zn2+‐dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd‐DOTA complex‐labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity‐associated protein (FTO) specifically demethylates the m6A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd‐DOTA complex‐labeled oligonucleotides. The restored T1 signal from the liberated Gd‐DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia‐mediated precise apoptotic cancer therapy.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adhm.202301437</doi><orcidid>https://orcid.org/0000000184988228</orcidid><orcidid>https://orcid.org/0000000190075513</orcidid><orcidid>https://orcid.org/0000000158940909</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2023-11, Vol.12 (28), p.e2301437-e2301437
issn 2192-2640
2192-2659
language eng
recordid cdi_osti_scitechconnect_2404876
source Wiley-Blackwell Read & Publish Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Antisense oligonucleotides
Apoptosis
Body fat
Cancer
Cancer therapies
Deoxyribozymes
DNAzyme
Gadolinium
Gene therapy
Heat shock proteins
Hsp70 protein
Hyperthermia
Iron oxides
Laser radiation
MRI
Nanoparticles
Oligonucleotides
Photothermal therapy
Signal transduction
Substrates
Therapy
Tumor cells
Tumors
Zinc
title Dual‐Responsive Turn‐On T1 Imaging‐Guided Mild Photothermia for Precise Apoptotic Cancer Therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%E2%80%90Responsive%20Turn%E2%80%90On%20T1%20Imaging%E2%80%90Guided%20Mild%20Photothermia%20for%20Precise%20Apoptotic%20Cancer%20Therapy&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Song,%20Sijie&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-11-10&rft.volume=12&rft.issue=28&rft.spage=e2301437&rft.epage=e2301437&rft.pages=e2301437-e2301437&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202301437&rft_dat=%3Cproquest_osti_%3E2830669313%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o243t-5ef860cc93e1a23fb93db6c0a86316bf76ee5140ccaff792fca0202c2cfe81493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888446594&rft_id=info:pmid/&rfr_iscdi=true