Loading…
Controlling solute channel formation using magnetic fields
Solute channel formation introduces compositional and microstructural variations in a range of processes, from metallic alloy solidification, to salt fingers in ocean and water reservoir flows. Applying an external magnetic field interacts with thermoelectric currents at solid/liquid interfaces gene...
Saved in:
Published in: | Acta materialia 2023-09, Vol.256, p.119107, Article 119107 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093 |
container_end_page | |
container_issue | |
container_start_page | 119107 |
container_title | Acta materialia |
container_volume | 256 |
creator | Fan, Xianqiang Shevchenko, Natalia Tonry, Catherine Clark, Samuel J. Atwood, Robert C. Eckert, Sven Pericleous, Koulis Lee, Peter D. Kao, Andrew |
description | Solute channel formation introduces compositional and microstructural variations in a range of processes, from metallic alloy solidification, to salt fingers in ocean and water reservoir flows. Applying an external magnetic field interacts with thermoelectric currents at solid/liquid interfaces generating additional flow fields. This thermoelectric (TE) magnetohydrodynamic (TEMHD) effect can impact on solute channel formation, via a mechanism recently drawing increasing attention. To investigate this phenomenon, we combined in situ synchrotron X-ray imaging and Parallel-Cellular-Automata-Lattice-Boltzmann based numerical simulations to study the characteristics of flow and solute transport under TEMHD. Observations suggest the macroscopic TEMHD flow appearing ahead of the solidification front, coupled with the microscopic TEMHD flow arising within the mushy zone are the primary mechanisms controlling plume migration and channel bias. Two TE regimes were revealed, each with distinctive mechanisms that dominate the flow. Further, we show that grain orientation modifies solute flow through anisotropic permeability. These insights led to a proposed strategy for producing solute channel-free solidification using a time-modulated magnetic field.
[Display omitted] |
doi_str_mv | 10.1016/j.actamat.2023.119107 |
format | article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2404968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964542300438X</els_id><sourcerecordid>S135964542300438X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKF4b02apGm8iBT_wYIXPYc0me5m6TaSZAW_vSndu6cZmPd-M_MQuiW4Ipg09_tKm6QPOlU1rmlFiCRYnKEVaQUta8bpee4pl2XDOLtEVzHuMSa1YHiFHjo_peDH0U3bIvrxmKAwOz1NMBaDDxnq_FQc4zw-6O0EyZlicDDaeI0uBj1GuDnVNfp6ef7s3srNx-t797QpDW1pKrkVrSUWKMPSYGJbYD1tDSdWWrBaQE-k1ZJrK0FIoYE3Jv8hW9r0ffbQNbpbuD4mp6JxCczO-HyiSapmmMmmzSK-iEzwMQYY1HdwBx1-FcFqTknt1SklNaeklpSy73HxQf7gx0GYF8BkwLow8613_xD-AIJUc00</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlling solute channel formation using magnetic fields</title><source>ScienceDirect Freedom Collection</source><creator>Fan, Xianqiang ; Shevchenko, Natalia ; Tonry, Catherine ; Clark, Samuel J. ; Atwood, Robert C. ; Eckert, Sven ; Pericleous, Koulis ; Lee, Peter D. ; Kao, Andrew</creator><creatorcontrib>Fan, Xianqiang ; Shevchenko, Natalia ; Tonry, Catherine ; Clark, Samuel J. ; Atwood, Robert C. ; Eckert, Sven ; Pericleous, Koulis ; Lee, Peter D. ; Kao, Andrew ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Solute channel formation introduces compositional and microstructural variations in a range of processes, from metallic alloy solidification, to salt fingers in ocean and water reservoir flows. Applying an external magnetic field interacts with thermoelectric currents at solid/liquid interfaces generating additional flow fields. This thermoelectric (TE) magnetohydrodynamic (TEMHD) effect can impact on solute channel formation, via a mechanism recently drawing increasing attention. To investigate this phenomenon, we combined in situ synchrotron X-ray imaging and Parallel-Cellular-Automata-Lattice-Boltzmann based numerical simulations to study the characteristics of flow and solute transport under TEMHD. Observations suggest the macroscopic TEMHD flow appearing ahead of the solidification front, coupled with the microscopic TEMHD flow arising within the mushy zone are the primary mechanisms controlling plume migration and channel bias. Two TE regimes were revealed, each with distinctive mechanisms that dominate the flow. Further, we show that grain orientation modifies solute flow through anisotropic permeability. These insights led to a proposed strategy for producing solute channel-free solidification using a time-modulated magnetic field.
[Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2023.119107</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Directional solidification ; Magnetic field ; MATERIALS SCIENCE ; Solute channel ; Thermoelectric magnetohydrodynamic</subject><ispartof>Acta materialia, 2023-09, Vol.256, p.119107, Article 119107</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093</citedby><cites>FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093</cites><orcidid>0000-0002-3898-8881 ; 0000-0003-3615-5170 ; 0000-0002-8214-0845 ; 0000-0002-7426-9999 ; 0000-0002-6177-2130 ; 0000-0002-6430-2134 ; 0000-0002-8678-3020 ; 0000000336155170 ; 0000000282140845 ; 0000000286783020 ; 0000000264302134 ; 0000000261772130 ; 0000000274269999 ; 0000000238988881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2404968$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Xianqiang</creatorcontrib><creatorcontrib>Shevchenko, Natalia</creatorcontrib><creatorcontrib>Tonry, Catherine</creatorcontrib><creatorcontrib>Clark, Samuel J.</creatorcontrib><creatorcontrib>Atwood, Robert C.</creatorcontrib><creatorcontrib>Eckert, Sven</creatorcontrib><creatorcontrib>Pericleous, Koulis</creatorcontrib><creatorcontrib>Lee, Peter D.</creatorcontrib><creatorcontrib>Kao, Andrew</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Controlling solute channel formation using magnetic fields</title><title>Acta materialia</title><description>Solute channel formation introduces compositional and microstructural variations in a range of processes, from metallic alloy solidification, to salt fingers in ocean and water reservoir flows. Applying an external magnetic field interacts with thermoelectric currents at solid/liquid interfaces generating additional flow fields. This thermoelectric (TE) magnetohydrodynamic (TEMHD) effect can impact on solute channel formation, via a mechanism recently drawing increasing attention. To investigate this phenomenon, we combined in situ synchrotron X-ray imaging and Parallel-Cellular-Automata-Lattice-Boltzmann based numerical simulations to study the characteristics of flow and solute transport under TEMHD. Observations suggest the macroscopic TEMHD flow appearing ahead of the solidification front, coupled with the microscopic TEMHD flow arising within the mushy zone are the primary mechanisms controlling plume migration and channel bias. Two TE regimes were revealed, each with distinctive mechanisms that dominate the flow. Further, we show that grain orientation modifies solute flow through anisotropic permeability. These insights led to a proposed strategy for producing solute channel-free solidification using a time-modulated magnetic field.
[Display omitted]</description><subject>Directional solidification</subject><subject>Magnetic field</subject><subject>MATERIALS SCIENCE</subject><subject>Solute channel</subject><subject>Thermoelectric magnetohydrodynamic</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKF4b02apGm8iBT_wYIXPYc0me5m6TaSZAW_vSndu6cZmPd-M_MQuiW4Ipg09_tKm6QPOlU1rmlFiCRYnKEVaQUta8bpee4pl2XDOLtEVzHuMSa1YHiFHjo_peDH0U3bIvrxmKAwOz1NMBaDDxnq_FQc4zw-6O0EyZlicDDaeI0uBj1GuDnVNfp6ef7s3srNx-t797QpDW1pKrkVrSUWKMPSYGJbYD1tDSdWWrBaQE-k1ZJrK0FIoYE3Jv8hW9r0ffbQNbpbuD4mp6JxCczO-HyiSapmmMmmzSK-iEzwMQYY1HdwBx1-FcFqTknt1SklNaeklpSy73HxQf7gx0GYF8BkwLow8613_xD-AIJUc00</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Fan, Xianqiang</creator><creator>Shevchenko, Natalia</creator><creator>Tonry, Catherine</creator><creator>Clark, Samuel J.</creator><creator>Atwood, Robert C.</creator><creator>Eckert, Sven</creator><creator>Pericleous, Koulis</creator><creator>Lee, Peter D.</creator><creator>Kao, Andrew</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3898-8881</orcidid><orcidid>https://orcid.org/0000-0003-3615-5170</orcidid><orcidid>https://orcid.org/0000-0002-8214-0845</orcidid><orcidid>https://orcid.org/0000-0002-7426-9999</orcidid><orcidid>https://orcid.org/0000-0002-6177-2130</orcidid><orcidid>https://orcid.org/0000-0002-6430-2134</orcidid><orcidid>https://orcid.org/0000-0002-8678-3020</orcidid><orcidid>https://orcid.org/0000000336155170</orcidid><orcidid>https://orcid.org/0000000282140845</orcidid><orcidid>https://orcid.org/0000000286783020</orcidid><orcidid>https://orcid.org/0000000264302134</orcidid><orcidid>https://orcid.org/0000000261772130</orcidid><orcidid>https://orcid.org/0000000274269999</orcidid><orcidid>https://orcid.org/0000000238988881</orcidid></search><sort><creationdate>20230901</creationdate><title>Controlling solute channel formation using magnetic fields</title><author>Fan, Xianqiang ; Shevchenko, Natalia ; Tonry, Catherine ; Clark, Samuel J. ; Atwood, Robert C. ; Eckert, Sven ; Pericleous, Koulis ; Lee, Peter D. ; Kao, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Directional solidification</topic><topic>Magnetic field</topic><topic>MATERIALS SCIENCE</topic><topic>Solute channel</topic><topic>Thermoelectric magnetohydrodynamic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xianqiang</creatorcontrib><creatorcontrib>Shevchenko, Natalia</creatorcontrib><creatorcontrib>Tonry, Catherine</creatorcontrib><creatorcontrib>Clark, Samuel J.</creatorcontrib><creatorcontrib>Atwood, Robert C.</creatorcontrib><creatorcontrib>Eckert, Sven</creatorcontrib><creatorcontrib>Pericleous, Koulis</creatorcontrib><creatorcontrib>Lee, Peter D.</creatorcontrib><creatorcontrib>Kao, Andrew</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xianqiang</au><au>Shevchenko, Natalia</au><au>Tonry, Catherine</au><au>Clark, Samuel J.</au><au>Atwood, Robert C.</au><au>Eckert, Sven</au><au>Pericleous, Koulis</au><au>Lee, Peter D.</au><au>Kao, Andrew</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling solute channel formation using magnetic fields</atitle><jtitle>Acta materialia</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>256</volume><spage>119107</spage><pages>119107-</pages><artnum>119107</artnum><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Solute channel formation introduces compositional and microstructural variations in a range of processes, from metallic alloy solidification, to salt fingers in ocean and water reservoir flows. Applying an external magnetic field interacts with thermoelectric currents at solid/liquid interfaces generating additional flow fields. This thermoelectric (TE) magnetohydrodynamic (TEMHD) effect can impact on solute channel formation, via a mechanism recently drawing increasing attention. To investigate this phenomenon, we combined in situ synchrotron X-ray imaging and Parallel-Cellular-Automata-Lattice-Boltzmann based numerical simulations to study the characteristics of flow and solute transport under TEMHD. Observations suggest the macroscopic TEMHD flow appearing ahead of the solidification front, coupled with the microscopic TEMHD flow arising within the mushy zone are the primary mechanisms controlling plume migration and channel bias. Two TE regimes were revealed, each with distinctive mechanisms that dominate the flow. Further, we show that grain orientation modifies solute flow through anisotropic permeability. These insights led to a proposed strategy for producing solute channel-free solidification using a time-modulated magnetic field.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2023.119107</doi><orcidid>https://orcid.org/0000-0002-3898-8881</orcidid><orcidid>https://orcid.org/0000-0003-3615-5170</orcidid><orcidid>https://orcid.org/0000-0002-8214-0845</orcidid><orcidid>https://orcid.org/0000-0002-7426-9999</orcidid><orcidid>https://orcid.org/0000-0002-6177-2130</orcidid><orcidid>https://orcid.org/0000-0002-6430-2134</orcidid><orcidid>https://orcid.org/0000-0002-8678-3020</orcidid><orcidid>https://orcid.org/0000000336155170</orcidid><orcidid>https://orcid.org/0000000282140845</orcidid><orcidid>https://orcid.org/0000000286783020</orcidid><orcidid>https://orcid.org/0000000264302134</orcidid><orcidid>https://orcid.org/0000000261772130</orcidid><orcidid>https://orcid.org/0000000274269999</orcidid><orcidid>https://orcid.org/0000000238988881</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2023-09, Vol.256, p.119107, Article 119107 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_osti_scitechconnect_2404968 |
source | ScienceDirect Freedom Collection |
subjects | Directional solidification Magnetic field MATERIALS SCIENCE Solute channel Thermoelectric magnetohydrodynamic |
title | Controlling solute channel formation using magnetic fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20solute%20channel%20formation%20using%20magnetic%20fields&rft.jtitle=Acta%20materialia&rft.au=Fan,%20Xianqiang&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2023-09-01&rft.volume=256&rft.spage=119107&rft.pages=119107-&rft.artnum=119107&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2023.119107&rft_dat=%3Celsevier_osti_%3ES135964542300438X%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |