Loading…

Controlling solute channel formation using magnetic fields

Solute channel formation introduces compositional and microstructural variations in a range of processes, from metallic alloy solidification, to salt fingers in ocean and water reservoir flows. Applying an external magnetic field interacts with thermoelectric currents at solid/liquid interfaces gene...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2023-09, Vol.256, p.119107, Article 119107
Main Authors: Fan, Xianqiang, Shevchenko, Natalia, Tonry, Catherine, Clark, Samuel J., Atwood, Robert C., Eckert, Sven, Pericleous, Koulis, Lee, Peter D., Kao, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093
cites cdi_FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093
container_end_page
container_issue
container_start_page 119107
container_title Acta materialia
container_volume 256
creator Fan, Xianqiang
Shevchenko, Natalia
Tonry, Catherine
Clark, Samuel J.
Atwood, Robert C.
Eckert, Sven
Pericleous, Koulis
Lee, Peter D.
Kao, Andrew
description Solute channel formation introduces compositional and microstructural variations in a range of processes, from metallic alloy solidification, to salt fingers in ocean and water reservoir flows. Applying an external magnetic field interacts with thermoelectric currents at solid/liquid interfaces generating additional flow fields. This thermoelectric (TE) magnetohydrodynamic (TEMHD) effect can impact on solute channel formation, via a mechanism recently drawing increasing attention. To investigate this phenomenon, we combined in situ synchrotron X-ray imaging and Parallel-Cellular-Automata-Lattice-Boltzmann based numerical simulations to study the characteristics of flow and solute transport under TEMHD. Observations suggest the macroscopic TEMHD flow appearing ahead of the solidification front, coupled with the microscopic TEMHD flow arising within the mushy zone are the primary mechanisms controlling plume migration and channel bias. Two TE regimes were revealed, each with distinctive mechanisms that dominate the flow. Further, we show that grain orientation modifies solute flow through anisotropic permeability. These insights led to a proposed strategy for producing solute channel-free solidification using a time-modulated magnetic field. [Display omitted]
doi_str_mv 10.1016/j.actamat.2023.119107
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2404968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964542300438X</els_id><sourcerecordid>S135964542300438X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKF4b02apGm8iBT_wYIXPYc0me5m6TaSZAW_vSndu6cZmPd-M_MQuiW4Ipg09_tKm6QPOlU1rmlFiCRYnKEVaQUta8bpee4pl2XDOLtEVzHuMSa1YHiFHjo_peDH0U3bIvrxmKAwOz1NMBaDDxnq_FQc4zw-6O0EyZlicDDaeI0uBj1GuDnVNfp6ef7s3srNx-t797QpDW1pKrkVrSUWKMPSYGJbYD1tDSdWWrBaQE-k1ZJrK0FIoYE3Jv8hW9r0ffbQNbpbuD4mp6JxCczO-HyiSapmmMmmzSK-iEzwMQYY1HdwBx1-FcFqTknt1SklNaeklpSy73HxQf7gx0GYF8BkwLow8613_xD-AIJUc00</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlling solute channel formation using magnetic fields</title><source>ScienceDirect Freedom Collection</source><creator>Fan, Xianqiang ; Shevchenko, Natalia ; Tonry, Catherine ; Clark, Samuel J. ; Atwood, Robert C. ; Eckert, Sven ; Pericleous, Koulis ; Lee, Peter D. ; Kao, Andrew</creator><creatorcontrib>Fan, Xianqiang ; Shevchenko, Natalia ; Tonry, Catherine ; Clark, Samuel J. ; Atwood, Robert C. ; Eckert, Sven ; Pericleous, Koulis ; Lee, Peter D. ; Kao, Andrew ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Solute channel formation introduces compositional and microstructural variations in a range of processes, from metallic alloy solidification, to salt fingers in ocean and water reservoir flows. Applying an external magnetic field interacts with thermoelectric currents at solid/liquid interfaces generating additional flow fields. This thermoelectric (TE) magnetohydrodynamic (TEMHD) effect can impact on solute channel formation, via a mechanism recently drawing increasing attention. To investigate this phenomenon, we combined in situ synchrotron X-ray imaging and Parallel-Cellular-Automata-Lattice-Boltzmann based numerical simulations to study the characteristics of flow and solute transport under TEMHD. Observations suggest the macroscopic TEMHD flow appearing ahead of the solidification front, coupled with the microscopic TEMHD flow arising within the mushy zone are the primary mechanisms controlling plume migration and channel bias. Two TE regimes were revealed, each with distinctive mechanisms that dominate the flow. Further, we show that grain orientation modifies solute flow through anisotropic permeability. These insights led to a proposed strategy for producing solute channel-free solidification using a time-modulated magnetic field. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2023.119107</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Directional solidification ; Magnetic field ; MATERIALS SCIENCE ; Solute channel ; Thermoelectric magnetohydrodynamic</subject><ispartof>Acta materialia, 2023-09, Vol.256, p.119107, Article 119107</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093</citedby><cites>FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093</cites><orcidid>0000-0002-3898-8881 ; 0000-0003-3615-5170 ; 0000-0002-8214-0845 ; 0000-0002-7426-9999 ; 0000-0002-6177-2130 ; 0000-0002-6430-2134 ; 0000-0002-8678-3020 ; 0000000336155170 ; 0000000282140845 ; 0000000286783020 ; 0000000264302134 ; 0000000261772130 ; 0000000274269999 ; 0000000238988881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2404968$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Xianqiang</creatorcontrib><creatorcontrib>Shevchenko, Natalia</creatorcontrib><creatorcontrib>Tonry, Catherine</creatorcontrib><creatorcontrib>Clark, Samuel J.</creatorcontrib><creatorcontrib>Atwood, Robert C.</creatorcontrib><creatorcontrib>Eckert, Sven</creatorcontrib><creatorcontrib>Pericleous, Koulis</creatorcontrib><creatorcontrib>Lee, Peter D.</creatorcontrib><creatorcontrib>Kao, Andrew</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Controlling solute channel formation using magnetic fields</title><title>Acta materialia</title><description>Solute channel formation introduces compositional and microstructural variations in a range of processes, from metallic alloy solidification, to salt fingers in ocean and water reservoir flows. Applying an external magnetic field interacts with thermoelectric currents at solid/liquid interfaces generating additional flow fields. This thermoelectric (TE) magnetohydrodynamic (TEMHD) effect can impact on solute channel formation, via a mechanism recently drawing increasing attention. To investigate this phenomenon, we combined in situ synchrotron X-ray imaging and Parallel-Cellular-Automata-Lattice-Boltzmann based numerical simulations to study the characteristics of flow and solute transport under TEMHD. Observations suggest the macroscopic TEMHD flow appearing ahead of the solidification front, coupled with the microscopic TEMHD flow arising within the mushy zone are the primary mechanisms controlling plume migration and channel bias. Two TE regimes were revealed, each with distinctive mechanisms that dominate the flow. Further, we show that grain orientation modifies solute flow through anisotropic permeability. These insights led to a proposed strategy for producing solute channel-free solidification using a time-modulated magnetic field. [Display omitted]</description><subject>Directional solidification</subject><subject>Magnetic field</subject><subject>MATERIALS SCIENCE</subject><subject>Solute channel</subject><subject>Thermoelectric magnetohydrodynamic</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKF4b02apGm8iBT_wYIXPYc0me5m6TaSZAW_vSndu6cZmPd-M_MQuiW4Ipg09_tKm6QPOlU1rmlFiCRYnKEVaQUta8bpee4pl2XDOLtEVzHuMSa1YHiFHjo_peDH0U3bIvrxmKAwOz1NMBaDDxnq_FQc4zw-6O0EyZlicDDaeI0uBj1GuDnVNfp6ef7s3srNx-t797QpDW1pKrkVrSUWKMPSYGJbYD1tDSdWWrBaQE-k1ZJrK0FIoYE3Jv8hW9r0ffbQNbpbuD4mp6JxCczO-HyiSapmmMmmzSK-iEzwMQYY1HdwBx1-FcFqTknt1SklNaeklpSy73HxQf7gx0GYF8BkwLow8613_xD-AIJUc00</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Fan, Xianqiang</creator><creator>Shevchenko, Natalia</creator><creator>Tonry, Catherine</creator><creator>Clark, Samuel J.</creator><creator>Atwood, Robert C.</creator><creator>Eckert, Sven</creator><creator>Pericleous, Koulis</creator><creator>Lee, Peter D.</creator><creator>Kao, Andrew</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3898-8881</orcidid><orcidid>https://orcid.org/0000-0003-3615-5170</orcidid><orcidid>https://orcid.org/0000-0002-8214-0845</orcidid><orcidid>https://orcid.org/0000-0002-7426-9999</orcidid><orcidid>https://orcid.org/0000-0002-6177-2130</orcidid><orcidid>https://orcid.org/0000-0002-6430-2134</orcidid><orcidid>https://orcid.org/0000-0002-8678-3020</orcidid><orcidid>https://orcid.org/0000000336155170</orcidid><orcidid>https://orcid.org/0000000282140845</orcidid><orcidid>https://orcid.org/0000000286783020</orcidid><orcidid>https://orcid.org/0000000264302134</orcidid><orcidid>https://orcid.org/0000000261772130</orcidid><orcidid>https://orcid.org/0000000274269999</orcidid><orcidid>https://orcid.org/0000000238988881</orcidid></search><sort><creationdate>20230901</creationdate><title>Controlling solute channel formation using magnetic fields</title><author>Fan, Xianqiang ; Shevchenko, Natalia ; Tonry, Catherine ; Clark, Samuel J. ; Atwood, Robert C. ; Eckert, Sven ; Pericleous, Koulis ; Lee, Peter D. ; Kao, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Directional solidification</topic><topic>Magnetic field</topic><topic>MATERIALS SCIENCE</topic><topic>Solute channel</topic><topic>Thermoelectric magnetohydrodynamic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xianqiang</creatorcontrib><creatorcontrib>Shevchenko, Natalia</creatorcontrib><creatorcontrib>Tonry, Catherine</creatorcontrib><creatorcontrib>Clark, Samuel J.</creatorcontrib><creatorcontrib>Atwood, Robert C.</creatorcontrib><creatorcontrib>Eckert, Sven</creatorcontrib><creatorcontrib>Pericleous, Koulis</creatorcontrib><creatorcontrib>Lee, Peter D.</creatorcontrib><creatorcontrib>Kao, Andrew</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xianqiang</au><au>Shevchenko, Natalia</au><au>Tonry, Catherine</au><au>Clark, Samuel J.</au><au>Atwood, Robert C.</au><au>Eckert, Sven</au><au>Pericleous, Koulis</au><au>Lee, Peter D.</au><au>Kao, Andrew</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling solute channel formation using magnetic fields</atitle><jtitle>Acta materialia</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>256</volume><spage>119107</spage><pages>119107-</pages><artnum>119107</artnum><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Solute channel formation introduces compositional and microstructural variations in a range of processes, from metallic alloy solidification, to salt fingers in ocean and water reservoir flows. Applying an external magnetic field interacts with thermoelectric currents at solid/liquid interfaces generating additional flow fields. This thermoelectric (TE) magnetohydrodynamic (TEMHD) effect can impact on solute channel formation, via a mechanism recently drawing increasing attention. To investigate this phenomenon, we combined in situ synchrotron X-ray imaging and Parallel-Cellular-Automata-Lattice-Boltzmann based numerical simulations to study the characteristics of flow and solute transport under TEMHD. Observations suggest the macroscopic TEMHD flow appearing ahead of the solidification front, coupled with the microscopic TEMHD flow arising within the mushy zone are the primary mechanisms controlling plume migration and channel bias. Two TE regimes were revealed, each with distinctive mechanisms that dominate the flow. Further, we show that grain orientation modifies solute flow through anisotropic permeability. These insights led to a proposed strategy for producing solute channel-free solidification using a time-modulated magnetic field. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2023.119107</doi><orcidid>https://orcid.org/0000-0002-3898-8881</orcidid><orcidid>https://orcid.org/0000-0003-3615-5170</orcidid><orcidid>https://orcid.org/0000-0002-8214-0845</orcidid><orcidid>https://orcid.org/0000-0002-7426-9999</orcidid><orcidid>https://orcid.org/0000-0002-6177-2130</orcidid><orcidid>https://orcid.org/0000-0002-6430-2134</orcidid><orcidid>https://orcid.org/0000-0002-8678-3020</orcidid><orcidid>https://orcid.org/0000000336155170</orcidid><orcidid>https://orcid.org/0000000282140845</orcidid><orcidid>https://orcid.org/0000000286783020</orcidid><orcidid>https://orcid.org/0000000264302134</orcidid><orcidid>https://orcid.org/0000000261772130</orcidid><orcidid>https://orcid.org/0000000274269999</orcidid><orcidid>https://orcid.org/0000000238988881</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2023-09, Vol.256, p.119107, Article 119107
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_2404968
source ScienceDirect Freedom Collection
subjects Directional solidification
Magnetic field
MATERIALS SCIENCE
Solute channel
Thermoelectric magnetohydrodynamic
title Controlling solute channel formation using magnetic fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20solute%20channel%20formation%20using%20magnetic%20fields&rft.jtitle=Acta%20materialia&rft.au=Fan,%20Xianqiang&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2023-09-01&rft.volume=256&rft.spage=119107&rft.pages=119107-&rft.artnum=119107&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2023.119107&rft_dat=%3Celsevier_osti_%3ES135964542300438X%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-5d78d1de3409c01d8e4b38c51d9deda7eb19da95ad9e797ae56c2029836bb4093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true