Loading…
High-resolution 3D strain and orientation mapping within a grain of a directed energy deposition laser additively manufactured superalloy
The industrialization of Laser Additive Manufacturing (LAM) is challenged by the undesirable microstructures and high residual stresses originating from the fast and complex solidification process. Non-destructive assessment of the mechanical performance controlling deformation patterning is therefo...
Saved in:
Published in: | Scripta materialia 2023-09, Vol.234, p.115579, Article 115579 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-dde150241b497d5b54ee049daf031a06d6dcdd471728e78d75a2d7c0197a36783 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-dde150241b497d5b54ee049daf031a06d6dcdd471728e78d75a2d7c0197a36783 |
container_end_page | |
container_issue | |
container_start_page | 115579 |
container_title | Scripta materialia |
container_volume | 234 |
creator | Chen, Y. Tang, Y.T. Collins, D.M. Clark, S.J. Ludwig, W. Rodriguez-Lamas, R. Detlefs, C. Reed, R.C. Lee, P.D. Withers, P.J. Yildirim, C. |
description | The industrialization of Laser Additive Manufacturing (LAM) is challenged by the undesirable microstructures and high residual stresses originating from the fast and complex solidification process. Non-destructive assessment of the mechanical performance controlling deformation patterning is therefore critical. Here, we use Dark Field X-ray Microscopy (DFXM) to map the 3D subsurface intragranular orientation and strain variations throughout a surface-breaking grain within a directed energy deposition nickel superalloy. DFXM results reveal a highly heterogenous 3D microstructure in terms of the local orientation and lattice strain. The grain comprises ≈ 5 μm-sized cells with alternating strain states, as high as 5 ×10−3, and orientation differences |
doi_str_mv | 10.1016/j.scriptamat.2023.115579 |
format | article |
fullrecord | <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2404971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359646223003032</els_id><sourcerecordid>oai_HAL_hal_04305265v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-dde150241b497d5b54ee049daf031a06d6dcdd471728e78d75a2d7c0197a36783</originalsourceid><addsrcrecordid>eNqFkc2u0zAQhSMEEpcL72CxY5FiO_5JlpfLT5EqsYG1NdeetK5SO7Ldoj4Cb43TIFiy8tjznaMZn6YhjG4YZer9cZNt8nOBE5QNp7zbMCalHp41d6zXvO2FVM9r3cmhVULxl82rnI-UUsU4u2t-bf3-0CbMcToXHwPpPpJcEvhAIDgSk8dQ4NY5wTz7sCc_fTksbbK_YXGspfMJbUFHMGDaX4nDOWZ_k02QMRFwrl4vOF2rTziPYMs5VT6fZ0wwTfH6unkxwpTxzZ_zvvnx-dP3x227-_bl6-PDrrWCD6V1DpmkXLAnMWgnn6RApGJwMNKOAVVOOeuc0EzzHnXvtATutKVs0NAp3Xf3zdvVN-biTba-oD3YGEJdwHBRvTSr0LsVOsBk5uRPkK4mgjfbh51Z3qjoqORKXha2X1mbYs4Jx78CRs2SkTmafxmZJSOzZlSlH1Yp1oUvHtMyDwaL638aF_3_TX4DxQyiJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-resolution 3D strain and orientation mapping within a grain of a directed energy deposition laser additively manufactured superalloy</title><source>ScienceDirect Freedom Collection</source><creator>Chen, Y. ; Tang, Y.T. ; Collins, D.M. ; Clark, S.J. ; Ludwig, W. ; Rodriguez-Lamas, R. ; Detlefs, C. ; Reed, R.C. ; Lee, P.D. ; Withers, P.J. ; Yildirim, C.</creator><creatorcontrib>Chen, Y. ; Tang, Y.T. ; Collins, D.M. ; Clark, S.J. ; Ludwig, W. ; Rodriguez-Lamas, R. ; Detlefs, C. ; Reed, R.C. ; Lee, P.D. ; Withers, P.J. ; Yildirim, C. ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The industrialization of Laser Additive Manufacturing (LAM) is challenged by the undesirable microstructures and high residual stresses originating from the fast and complex solidification process. Non-destructive assessment of the mechanical performance controlling deformation patterning is therefore critical. Here, we use Dark Field X-ray Microscopy (DFXM) to map the 3D subsurface intragranular orientation and strain variations throughout a surface-breaking grain within a directed energy deposition nickel superalloy. DFXM results reveal a highly heterogenous 3D microstructure in terms of the local orientation and lattice strain. The grain comprises ≈ 5 μm-sized cells with alternating strain states, as high as 5 ×10−3, and orientation differences <0.5°. The DFXM results are compared to Electron Backscatter Diffraction measurements of the same grain from its cut-off surface. We discuss the microstructure developments during LAM, rationalising the development of the deformation patterning from the extreme thermal gradients during processing and the susceptibility for solute segregation.</description><identifier>ISSN: 1359-6462</identifier><identifier>EISSN: 1872-8456</identifier><identifier>DOI: 10.1016/j.scriptamat.2023.115579</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Dark field x-ray microscopy ; Directed energy deposition ; Electron backscatter diffraction ; Engineering Sciences ; Laser additive manufacturing ; MATERIALS SCIENCE ; Microstructure</subject><ispartof>Scripta materialia, 2023-09, Vol.234, p.115579, Article 115579</ispartof><rights>2023 Acta Materialia Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-dde150241b497d5b54ee049daf031a06d6dcdd471728e78d75a2d7c0197a36783</citedby><cites>FETCH-LOGICAL-c429t-dde150241b497d5b54ee049daf031a06d6dcdd471728e78d75a2d7c0197a36783</cites><orcidid>0000-0002-1684-2507 ; 0000-0002-9667-7846 ; 0000-0002-5691-2039 ; 0000-0002-4969-0685 ; 0000-0002-1946-5647 ; 0000-0003-2573-2286 ; 0000-0003-2458-9713 ; 0000-0002-3898-8881 ; 0000000325732286 ; 0000000219465647 ; 0000000296677846 ; 0000000324589713 ; 0000000238988881 ; 0000000249690685 ; 0000000256912039 ; 0000000216842507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04305265$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2404971$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Tang, Y.T.</creatorcontrib><creatorcontrib>Collins, D.M.</creatorcontrib><creatorcontrib>Clark, S.J.</creatorcontrib><creatorcontrib>Ludwig, W.</creatorcontrib><creatorcontrib>Rodriguez-Lamas, R.</creatorcontrib><creatorcontrib>Detlefs, C.</creatorcontrib><creatorcontrib>Reed, R.C.</creatorcontrib><creatorcontrib>Lee, P.D.</creatorcontrib><creatorcontrib>Withers, P.J.</creatorcontrib><creatorcontrib>Yildirim, C.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>High-resolution 3D strain and orientation mapping within a grain of a directed energy deposition laser additively manufactured superalloy</title><title>Scripta materialia</title><description>The industrialization of Laser Additive Manufacturing (LAM) is challenged by the undesirable microstructures and high residual stresses originating from the fast and complex solidification process. Non-destructive assessment of the mechanical performance controlling deformation patterning is therefore critical. Here, we use Dark Field X-ray Microscopy (DFXM) to map the 3D subsurface intragranular orientation and strain variations throughout a surface-breaking grain within a directed energy deposition nickel superalloy. DFXM results reveal a highly heterogenous 3D microstructure in terms of the local orientation and lattice strain. The grain comprises ≈ 5 μm-sized cells with alternating strain states, as high as 5 ×10−3, and orientation differences <0.5°. The DFXM results are compared to Electron Backscatter Diffraction measurements of the same grain from its cut-off surface. We discuss the microstructure developments during LAM, rationalising the development of the deformation patterning from the extreme thermal gradients during processing and the susceptibility for solute segregation.</description><subject>Dark field x-ray microscopy</subject><subject>Directed energy deposition</subject><subject>Electron backscatter diffraction</subject><subject>Engineering Sciences</subject><subject>Laser additive manufacturing</subject><subject>MATERIALS SCIENCE</subject><subject>Microstructure</subject><issn>1359-6462</issn><issn>1872-8456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc2u0zAQhSMEEpcL72CxY5FiO_5JlpfLT5EqsYG1NdeetK5SO7Ldoj4Cb43TIFiy8tjznaMZn6YhjG4YZer9cZNt8nOBE5QNp7zbMCalHp41d6zXvO2FVM9r3cmhVULxl82rnI-UUsU4u2t-bf3-0CbMcToXHwPpPpJcEvhAIDgSk8dQ4NY5wTz7sCc_fTksbbK_YXGspfMJbUFHMGDaX4nDOWZ_k02QMRFwrl4vOF2rTziPYMs5VT6fZ0wwTfH6unkxwpTxzZ_zvvnx-dP3x227-_bl6-PDrrWCD6V1DpmkXLAnMWgnn6RApGJwMNKOAVVOOeuc0EzzHnXvtATutKVs0NAp3Xf3zdvVN-biTba-oD3YGEJdwHBRvTSr0LsVOsBk5uRPkK4mgjfbh51Z3qjoqORKXha2X1mbYs4Jx78CRs2SkTmafxmZJSOzZlSlH1Yp1oUvHtMyDwaL638aF_3_TX4DxQyiJA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Chen, Y.</creator><creator>Tang, Y.T.</creator><creator>Collins, D.M.</creator><creator>Clark, S.J.</creator><creator>Ludwig, W.</creator><creator>Rodriguez-Lamas, R.</creator><creator>Detlefs, C.</creator><creator>Reed, R.C.</creator><creator>Lee, P.D.</creator><creator>Withers, P.J.</creator><creator>Yildirim, C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1684-2507</orcidid><orcidid>https://orcid.org/0000-0002-9667-7846</orcidid><orcidid>https://orcid.org/0000-0002-5691-2039</orcidid><orcidid>https://orcid.org/0000-0002-4969-0685</orcidid><orcidid>https://orcid.org/0000-0002-1946-5647</orcidid><orcidid>https://orcid.org/0000-0003-2573-2286</orcidid><orcidid>https://orcid.org/0000-0003-2458-9713</orcidid><orcidid>https://orcid.org/0000-0002-3898-8881</orcidid><orcidid>https://orcid.org/0000000325732286</orcidid><orcidid>https://orcid.org/0000000219465647</orcidid><orcidid>https://orcid.org/0000000296677846</orcidid><orcidid>https://orcid.org/0000000324589713</orcidid><orcidid>https://orcid.org/0000000238988881</orcidid><orcidid>https://orcid.org/0000000249690685</orcidid><orcidid>https://orcid.org/0000000256912039</orcidid><orcidid>https://orcid.org/0000000216842507</orcidid></search><sort><creationdate>20230901</creationdate><title>High-resolution 3D strain and orientation mapping within a grain of a directed energy deposition laser additively manufactured superalloy</title><author>Chen, Y. ; Tang, Y.T. ; Collins, D.M. ; Clark, S.J. ; Ludwig, W. ; Rodriguez-Lamas, R. ; Detlefs, C. ; Reed, R.C. ; Lee, P.D. ; Withers, P.J. ; Yildirim, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-dde150241b497d5b54ee049daf031a06d6dcdd471728e78d75a2d7c0197a36783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dark field x-ray microscopy</topic><topic>Directed energy deposition</topic><topic>Electron backscatter diffraction</topic><topic>Engineering Sciences</topic><topic>Laser additive manufacturing</topic><topic>MATERIALS SCIENCE</topic><topic>Microstructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Tang, Y.T.</creatorcontrib><creatorcontrib>Collins, D.M.</creatorcontrib><creatorcontrib>Clark, S.J.</creatorcontrib><creatorcontrib>Ludwig, W.</creatorcontrib><creatorcontrib>Rodriguez-Lamas, R.</creatorcontrib><creatorcontrib>Detlefs, C.</creatorcontrib><creatorcontrib>Reed, R.C.</creatorcontrib><creatorcontrib>Lee, P.D.</creatorcontrib><creatorcontrib>Withers, P.J.</creatorcontrib><creatorcontrib>Yildirim, C.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Scripta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Y.</au><au>Tang, Y.T.</au><au>Collins, D.M.</au><au>Clark, S.J.</au><au>Ludwig, W.</au><au>Rodriguez-Lamas, R.</au><au>Detlefs, C.</au><au>Reed, R.C.</au><au>Lee, P.D.</au><au>Withers, P.J.</au><au>Yildirim, C.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution 3D strain and orientation mapping within a grain of a directed energy deposition laser additively manufactured superalloy</atitle><jtitle>Scripta materialia</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>234</volume><spage>115579</spage><pages>115579-</pages><artnum>115579</artnum><issn>1359-6462</issn><eissn>1872-8456</eissn><abstract>The industrialization of Laser Additive Manufacturing (LAM) is challenged by the undesirable microstructures and high residual stresses originating from the fast and complex solidification process. Non-destructive assessment of the mechanical performance controlling deformation patterning is therefore critical. Here, we use Dark Field X-ray Microscopy (DFXM) to map the 3D subsurface intragranular orientation and strain variations throughout a surface-breaking grain within a directed energy deposition nickel superalloy. DFXM results reveal a highly heterogenous 3D microstructure in terms of the local orientation and lattice strain. The grain comprises ≈ 5 μm-sized cells with alternating strain states, as high as 5 ×10−3, and orientation differences <0.5°. The DFXM results are compared to Electron Backscatter Diffraction measurements of the same grain from its cut-off surface. We discuss the microstructure developments during LAM, rationalising the development of the deformation patterning from the extreme thermal gradients during processing and the susceptibility for solute segregation.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.scriptamat.2023.115579</doi><orcidid>https://orcid.org/0000-0002-1684-2507</orcidid><orcidid>https://orcid.org/0000-0002-9667-7846</orcidid><orcidid>https://orcid.org/0000-0002-5691-2039</orcidid><orcidid>https://orcid.org/0000-0002-4969-0685</orcidid><orcidid>https://orcid.org/0000-0002-1946-5647</orcidid><orcidid>https://orcid.org/0000-0003-2573-2286</orcidid><orcidid>https://orcid.org/0000-0003-2458-9713</orcidid><orcidid>https://orcid.org/0000-0002-3898-8881</orcidid><orcidid>https://orcid.org/0000000325732286</orcidid><orcidid>https://orcid.org/0000000219465647</orcidid><orcidid>https://orcid.org/0000000296677846</orcidid><orcidid>https://orcid.org/0000000324589713</orcidid><orcidid>https://orcid.org/0000000238988881</orcidid><orcidid>https://orcid.org/0000000249690685</orcidid><orcidid>https://orcid.org/0000000256912039</orcidid><orcidid>https://orcid.org/0000000216842507</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6462 |
ispartof | Scripta materialia, 2023-09, Vol.234, p.115579, Article 115579 |
issn | 1359-6462 1872-8456 |
language | eng |
recordid | cdi_osti_scitechconnect_2404971 |
source | ScienceDirect Freedom Collection |
subjects | Dark field x-ray microscopy Directed energy deposition Electron backscatter diffraction Engineering Sciences Laser additive manufacturing MATERIALS SCIENCE Microstructure |
title | High-resolution 3D strain and orientation mapping within a grain of a directed energy deposition laser additively manufactured superalloy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%203D%20strain%20and%20orientation%20mapping%20within%20a%20grain%20of%20a%20directed%20energy%20deposition%20laser%20additively%20manufactured%20superalloy&rft.jtitle=Scripta%20materialia&rft.au=Chen,%20Y.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2023-09-01&rft.volume=234&rft.spage=115579&rft.pages=115579-&rft.artnum=115579&rft.issn=1359-6462&rft.eissn=1872-8456&rft_id=info:doi/10.1016/j.scriptamat.2023.115579&rft_dat=%3Chal_osti_%3Eoai_HAL_hal_04305265v1%3C/hal_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-dde150241b497d5b54ee049daf031a06d6dcdd471728e78d75a2d7c0197a36783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |